ReL-SAR: Representation Learning for Skeleton Action Recognition with Convolutional Transformers and BYOL
- URL: http://arxiv.org/abs/2409.05749v1
- Date: Mon, 9 Sep 2024 16:03:26 GMT
- Title: ReL-SAR: Representation Learning for Skeleton Action Recognition with Convolutional Transformers and BYOL
- Authors: Safwen Naimi, Wassim Bouachir, Guillaume-Alexandre Bilodeau,
- Abstract summary: Unsupervised representation learning is of prime importance to leverage unlabeled skeleton data.
We design a lightweight convolutional transformer framework, named ReL-SAR, for jointly modeling spatial and temporal cues in skeleton sequences.
We capitalize on Bootstrap Your Own Latent (BYOL) to learn robust representations from unlabeled skeleton sequence data.
- Score: 6.603505460200282
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To extract robust and generalizable skeleton action recognition features, large amounts of well-curated data are typically required, which is a challenging task hindered by annotation and computation costs. Therefore, unsupervised representation learning is of prime importance to leverage unlabeled skeleton data. In this work, we investigate unsupervised representation learning for skeleton action recognition. For this purpose, we designed a lightweight convolutional transformer framework, named ReL-SAR, exploiting the complementarity of convolutional and attention layers for jointly modeling spatial and temporal cues in skeleton sequences. We also use a Selection-Permutation strategy for skeleton joints to ensure more informative descriptions from skeletal data. Finally, we capitalize on Bootstrap Your Own Latent (BYOL) to learn robust representations from unlabeled skeleton sequence data. We achieved very competitive results on limited-size datasets: MCAD, IXMAS, JHMDB, and NW-UCLA, showing the effectiveness of our proposed method against state-of-the-art methods in terms of both performance and computational efficiency. To ensure reproducibility and reusability, the source code including all implementation parameters is provided at: https://github.com/SafwenNaimi/Representation-Learning-for-Skeleton-Action-Recognition-with-Convolut ional-Transformers-and-BYOL
Related papers
- MacDiff: Unified Skeleton Modeling with Masked Conditional Diffusion [14.907473847787541]
We propose Masked Diffusion Conditional (MacDiff) as a unified framework for human skeleton modeling.
For the first time, we leverage diffusion models as effective skeleton representation learners.
MacDiff achieves state-of-the-art performance on representation learning benchmarks while maintaining the competence for generative tasks.
arXiv Detail & Related papers (2024-09-16T17:06:10Z) - Skeleton2vec: A Self-supervised Learning Framework with Contextualized
Target Representations for Skeleton Sequence [56.092059713922744]
We show that using high-level contextualized features as prediction targets can achieve superior performance.
Specifically, we propose Skeleton2vec, a simple and efficient self-supervised 3D action representation learning framework.
Our proposed Skeleton2vec outperforms previous methods and achieves state-of-the-art results.
arXiv Detail & Related papers (2024-01-01T12:08:35Z) - Balanced Representation Learning for Long-tailed Skeleton-based Action
Recognition [33.212205680007756]
We propose a novel balanced representation learning method to address the long-tailed problem in action recognition.
We design a detached action-aware learning schedule to further mitigate the bias in the representation space.
The proposed method is validated on four skeleton datasets.
arXiv Detail & Related papers (2023-08-27T07:25:51Z) - SkeletonMAE: Graph-based Masked Autoencoder for Skeleton Sequence
Pre-training [110.55093254677638]
We propose an efficient skeleton sequence learning framework, named Skeleton Sequence Learning (SSL)
In this paper, we build an asymmetric graph-based encoder-decoder pre-training architecture named SkeletonMAE.
Our SSL generalizes well across different datasets and outperforms the state-of-the-art self-supervised skeleton-based action recognition methods.
arXiv Detail & Related papers (2023-07-17T13:33:11Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
We present an Adaptive Local-Component-aware Graph Convolutional Network for skeleton-based action recognition.
Our method provides a stronger representation than the global embedding and helps our model reach state-of-the-art.
arXiv Detail & Related papers (2022-09-21T02:33:07Z) - SkeletonMAE: Spatial-Temporal Masked Autoencoders for Self-supervised
Skeleton Action Recognition [13.283178393519234]
Self-supervised skeleton-based action recognition has attracted more attention.
With utilizing the unlabeled data, more generalizable features can be learned to alleviate the overfitting problem.
We propose a spatial-temporal masked autoencoder framework for self-supervised 3D skeleton-based action recognition.
arXiv Detail & Related papers (2022-09-01T20:54:27Z) - Joint-bone Fusion Graph Convolutional Network for Semi-supervised
Skeleton Action Recognition [65.78703941973183]
We propose a novel correlation-driven joint-bone fusion graph convolutional network (CD-JBF-GCN) as an encoder and use a pose prediction head as a decoder.
Specifically, the CD-JBF-GC can explore the motion transmission between the joint stream and the bone stream.
The pose prediction based auto-encoder in the self-supervised training stage allows the network to learn motion representation from unlabeled data.
arXiv Detail & Related papers (2022-02-08T16:03:15Z) - Skeleton-Contrastive 3D Action Representation Learning [35.06361753065124]
This paper strives for self-supervised learning of a feature space suitable for skeleton-based action recognition.
Our approach achieves state-of-the-art performance for self-supervised learning from skeleton data on the challenging PKU and NTU datasets.
arXiv Detail & Related papers (2021-08-08T14:44:59Z) - A Self-Supervised Gait Encoding Approach with Locality-Awareness for 3D
Skeleton Based Person Re-Identification [65.18004601366066]
Person re-identification (Re-ID) via gait features within 3D skeleton sequences is a newly-emerging topic with several advantages.
This paper proposes a self-supervised gait encoding approach that can leverage unlabeled skeleton data to learn gait representations for person Re-ID.
arXiv Detail & Related papers (2020-09-05T16:06:04Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
We introduce a parametrized representation of fixed size, which embeds and then aggregates elements from a given input set according to the optimal transport plan between the set and a trainable reference.
Our approach scales to large datasets and allows end-to-end training of the reference, while also providing a simple unsupervised learning mechanism with small computational cost.
arXiv Detail & Related papers (2020-06-22T08:35:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.