Breaking Neural Network Scaling Laws with Modularity
- URL: http://arxiv.org/abs/2409.05780v1
- Date: Mon, 9 Sep 2024 16:43:09 GMT
- Title: Breaking Neural Network Scaling Laws with Modularity
- Authors: Akhilan Boopathy, Sunshine Jiang, William Yue, Jaedong Hwang, Abhiram Iyer, Ila Fiete,
- Abstract summary: We show how the amount of training data required to generalize varies with the intrinsic dimensionality of a task's input.
We then develop a novel learning rule for modular networks to exploit this advantage.
- Score: 8.482423139660153
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modular neural networks outperform nonmodular neural networks on tasks ranging from visual question answering to robotics. These performance improvements are thought to be due to modular networks' superior ability to model the compositional and combinatorial structure of real-world problems. However, a theoretical explanation of how modularity improves generalizability, and how to leverage task modularity while training networks remains elusive. Using recent theoretical progress in explaining neural network generalization, we investigate how the amount of training data required to generalize on a task varies with the intrinsic dimensionality of a task's input. We show theoretically that when applied to modularly structured tasks, while nonmodular networks require an exponential number of samples with task dimensionality, modular networks' sample complexity is independent of task dimensionality: modular networks can generalize in high dimensions. We then develop a novel learning rule for modular networks to exploit this advantage and empirically show the improved generalization of the rule, both in- and out-of-distribution, on high-dimensional, modular tasks.
Related papers
- Modular Growth of Hierarchical Networks: Efficient, General, and Robust Curriculum Learning [0.0]
We show that for a given classical, non-modular recurrent neural network (RNN), an equivalent modular network will perform better across multiple metrics.
We demonstrate that the inductive bias introduced by the modular topology is strong enough for the network to perform well even when the connectivity within modules is fixed.
Our findings suggest that gradual modular growth of RNNs could provide advantages for learning increasingly complex tasks on evolutionary timescales.
arXiv Detail & Related papers (2024-06-10T13:44:07Z) - Generalization and Estimation Error Bounds for Model-based Neural
Networks [78.88759757988761]
We show that the generalization abilities of model-based networks for sparse recovery outperform those of regular ReLU networks.
We derive practical design rules that allow to construct model-based networks with guaranteed high generalization.
arXiv Detail & Related papers (2023-04-19T16:39:44Z) - Modular Deep Learning [120.36599591042908]
Transfer learning has recently become the dominant paradigm of machine learning.
It remains unclear how to develop models that specialise towards multiple tasks without incurring negative interference.
Modular deep learning has emerged as a promising solution to these challenges.
arXiv Detail & Related papers (2023-02-22T18:11:25Z) - Break It Down: Evidence for Structural Compositionality in Neural
Networks [32.382094867951224]
We show that neural networks can learn compositionality, obviating the need for specialized symbolic mechanisms.
This suggests that neural networks may be able to learn compositionality, obviating the need for specialized symbolic mechanisms.
arXiv Detail & Related papers (2023-01-26T00:53:11Z) - Towards Understanding the Link Between Modularity and Performance in Neural Networks for Reinforcement Learning [2.038038953957366]
We find that the amount of network modularity for optimal performance is likely entangled in complex relationships between many other features of the network and problem environment.
We used a classic neuroevolutionary algorithm which enables rich, automatic optimisation and exploration of neural network architectures.
arXiv Detail & Related papers (2022-05-13T05:18:18Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
We present Neural Interpreters, an architecture that factorizes inference in a self-attention network as a system of modules.
inputs to the model are routed through a sequence of functions in a way that is end-to-end learned.
We show that Neural Interpreters perform on par with the vision transformer using fewer parameters, while being transferrable to a new task in a sample efficient manner.
arXiv Detail & Related papers (2021-10-12T23:22:45Z) - Neural Function Modules with Sparse Arguments: A Dynamic Approach to
Integrating Information across Layers [84.57980167400513]
Neural Function Modules (NFM) aims to introduce the same structural capability into deep learning.
Most of the work in the context of feed-forward networks combining top-down and bottom-up feedback is limited to classification problems.
The key contribution of our work is to combine attention, sparsity, top-down and bottom-up feedback, in a flexible algorithm.
arXiv Detail & Related papers (2020-10-15T20:43:17Z) - Are Neural Nets Modular? Inspecting Functional Modularity Through
Differentiable Weight Masks [10.0444013205203]
Understanding if and how NNs are modular could provide insights into how to improve them.
Current inspection methods, however, fail to link modules to their functionality.
arXiv Detail & Related papers (2020-10-05T15:04:11Z) - Neural Complexity Measures [96.06344259626127]
We propose Neural Complexity (NC), a meta-learning framework for predicting generalization.
Our model learns a scalar complexity measure through interactions with many heterogeneous tasks in a data-driven way.
arXiv Detail & Related papers (2020-08-07T02:12:10Z) - Obtaining Faithful Interpretations from Compositional Neural Networks [72.41100663462191]
We evaluate the intermediate outputs of NMNs on NLVR2 and DROP datasets.
We find that the intermediate outputs differ from the expected output, illustrating that the network structure does not provide a faithful explanation of model behaviour.
arXiv Detail & Related papers (2020-05-02T06:50:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.