TransformerRanker: A Tool for Efficiently Finding the Best-Suited Language Models for Downstream Classification Tasks
- URL: http://arxiv.org/abs/2409.05997v1
- Date: Mon, 9 Sep 2024 18:47:00 GMT
- Title: TransformerRanker: A Tool for Efficiently Finding the Best-Suited Language Models for Downstream Classification Tasks
- Authors: Lukas Garbas, Max Ploner, Alan Akbik,
- Abstract summary: TransformerRanker is a lightweight library that ranks pre-trained language models for classification tasks.
Our library implements current approaches for transferability estimation.
We make TransformerRanker available as a pip-installable open-source library.
- Score: 2.497666465251894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Classification tasks in NLP are typically addressed by selecting a pre-trained language model (PLM) from a model hub, and fine-tuning it for the task at hand. However, given the very large number of PLMs that are currently available, a practical challenge is to determine which of them will perform best for a specific downstream task. With this paper, we introduce TransformerRanker, a lightweight library that efficiently ranks PLMs for classification tasks without the need for computationally costly fine-tuning. Our library implements current approaches for transferability estimation (LogME, H-Score, kNN), in combination with layer aggregation options, which we empirically showed to yield state-of-the-art rankings of PLMs (Garbas et al., 2024). We designed the interface to be lightweight and easy to use, allowing users to directly connect to the HuggingFace Transformers and Dataset libraries. Users need only select a downstream classification task and a list of PLMs to create a ranking of likely best-suited PLMs for their task. We make TransformerRanker available as a pip-installable open-source library https://github.com/flairNLP/transformer-ranker.
Related papers
- LLM-AutoDiff: Auto-Differentiate Any LLM Workflow [58.56731133392544]
We introduce LLM-AutoDiff: a novel framework for Automatic Prompt Engineering (APE)
LLMs-AutoDiff treats each textual input as a trainable parameter and uses a frozen backward engine to generate feedback-akin to textual gradients.
It consistently outperforms existing textual gradient baselines in both accuracy and training cost.
arXiv Detail & Related papers (2025-01-28T03:18:48Z) - Lightweight Safety Classification Using Pruned Language Models [0.0]
We introduce a novel technique for content safety and prompt injection classification for Large Language Models.
Our approach delivers superior performance surpassing GPT-4o and special-purpose models fine-tuned for each task.
Our results indicate that a single general-purpose LLM can be used to classify content safety, detect prompt injections, and simultaneously generate output tokens.
arXiv Detail & Related papers (2024-12-18T02:13:13Z) - Towards Modular LLMs by Building and Reusing a Library of LoRAs [64.43376695346538]
We study how to best build a library of adapters given multi-task data.
We introduce model-based clustering, MBC, a method that groups tasks based on the similarity of their adapter parameters.
To re-use the library, we present a novel zero-shot routing mechanism, Arrow, which enables dynamic selection of the most relevant adapters.
arXiv Detail & Related papers (2024-05-18T03:02:23Z) - Large Language Models Can Automatically Engineer Features for Few-Shot Tabular Learning [35.03338699349037]
We propose a novel in-context learning framework, FeatLLM, which employs Large Language Models as feature engineers.
FeatLLM generates high-quality rules, significantly (10% on average) outperforming alternatives such as TabLLM and STUNT.
arXiv Detail & Related papers (2024-04-15T06:26:08Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN)
At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself.
This sheds light on the promise of self-play, enabling the achievement of human-level performance in LLMs without the need for expert opponents.
arXiv Detail & Related papers (2024-01-02T18:53:13Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
Large Language Models (LLMs) are equipped to deal with larger context lengths.
LLMs can consistently outperform the SotA when the target text is large.
Few-shot learning yields better performance than zero-shot learning.
arXiv Detail & Related papers (2023-10-12T17:17:27Z) - MLLM-DataEngine: An Iterative Refinement Approach for MLLM [62.30753425449056]
We propose a novel closed-loop system that bridges data generation, model training, and evaluation.
Within each loop, the MLLM-DataEngine first analyze the weakness of the model based on the evaluation results.
For targeting, we propose an Adaptive Bad-case Sampling module, which adjusts the ratio of different types of data.
For quality, we resort to GPT-4 to generate high-quality data with each given data type.
arXiv Detail & Related papers (2023-08-25T01:41:04Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z) - Large Language Models are Zero-Shot Rankers for Recommender Systems [76.02500186203929]
This work aims to investigate the capacity of large language models (LLMs) to act as the ranking model for recommender systems.
We show that LLMs have promising zero-shot ranking abilities but struggle to perceive the order of historical interactions.
We demonstrate that these issues can be alleviated using specially designed prompting and bootstrapping strategies.
arXiv Detail & Related papers (2023-05-15T17:57:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.