DiffusionPen: Towards Controlling the Style of Handwritten Text Generation
- URL: http://arxiv.org/abs/2409.06065v1
- Date: Mon, 9 Sep 2024 20:58:25 GMT
- Title: DiffusionPen: Towards Controlling the Style of Handwritten Text Generation
- Authors: Konstantina Nikolaidou, George Retsinas, Giorgos Sfikas, Marcus Liwicki,
- Abstract summary: DiffusionPen (DiffPen) is a 5-shot style handwritten text generation approach based on Latent Diffusion Models.
Our approach captures both textual and stylistic characteristics of seen and unseen words and styles, generating realistic handwritten samples.
Our method outperforms existing methods qualitatively and quantitatively, and its additional generated data can improve the performance of Handwriting Text Recognition (HTR) systems.
- Score: 7.398476020996681
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Handwritten Text Generation (HTG) conditioned on text and style is a challenging task due to the variability of inter-user characteristics and the unlimited combinations of characters that form new words unseen during training. Diffusion Models have recently shown promising results in HTG but still remain under-explored. We present DiffusionPen (DiffPen), a 5-shot style handwritten text generation approach based on Latent Diffusion Models. By utilizing a hybrid style extractor that combines metric learning and classification, our approach manages to capture both textual and stylistic characteristics of seen and unseen words and styles, generating realistic handwritten samples. Moreover, we explore several variation strategies of the data with multi-style mixtures and noisy embeddings, enhancing the robustness and diversity of the generated data. Extensive experiments using IAM offline handwriting database show that our method outperforms existing methods qualitatively and quantitatively, and its additional generated data can improve the performance of Handwriting Text Recognition (HTR) systems. The code is available at: https://github.com/koninik/DiffusionPen.
Related papers
- One-Shot Diffusion Mimicker for Handwritten Text Generation [5.845883883415509]
Existing handwritten text generation methods often require more than ten handwriting samples as style references.
One-shot generation significantly simplifies the process but poses a significant challenge due to the difficulty of accurately capturing a writer's style from a single sample.
We propose a One-shot Diffusion Mimicker (One-DM) to generate handwritten text that can mimic any calligraphic style with only one reference sample.
arXiv Detail & Related papers (2024-09-06T03:10:59Z) - ArtWeaver: Advanced Dynamic Style Integration via Diffusion Model [73.95608242322949]
Stylized Text-to-Image Generation (STIG) aims to generate images from text prompts and style reference images.
We present ArtWeaver, a novel framework that leverages pretrained Stable Diffusion to address challenges such as misinterpreted styles and inconsistent semantics.
arXiv Detail & Related papers (2024-05-24T07:19:40Z) - Stylized Data-to-Text Generation: A Case Study in the E-Commerce Domain [53.22419717434372]
We propose a new task, namely stylized data-to-text generation, whose aim is to generate coherent text according to a specific style.
This task is non-trivial, due to three challenges: the logic of the generated text, unstructured style reference, and biased training samples.
We propose a novel stylized data-to-text generation model, named StyleD2T, comprising three components: logic planning-enhanced data embedding, mask-based style embedding, and unbiased stylized text generation.
arXiv Detail & Related papers (2023-05-05T03:02:41Z) - GlyphDiffusion: Text Generation as Image Generation [100.98428068214736]
We propose GlyphDiffusion, a novel diffusion approach for text generation via text-guided image generation.
Our key idea is to render the target text as a glyph image containing visual language content.
Our model also makes significant improvements compared to the recent diffusion model.
arXiv Detail & Related papers (2023-04-25T02:14:44Z) - WordStylist: Styled Verbatim Handwritten Text Generation with Latent
Diffusion Models [8.334487584550185]
We present a latent diffusion-based method for styled text-to-text-content-image generation on word-level.
Our proposed method is able to generate realistic word image samples from different writer styles.
We show that the proposed model produces samples that are aesthetically pleasing, help boosting text recognition performance, and get similar writer retrieval score as real data.
arXiv Detail & Related papers (2023-03-29T10:19:26Z) - DS-Fusion: Artistic Typography via Discriminated and Stylized Diffusion [10.75789076591325]
We introduce a novel method to automatically generate an artistic typography by stylizing one or more letter fonts.
Our approach utilizes large language models to bridge texts and visual images for stylization and build an unsupervised generative model.
arXiv Detail & Related papers (2023-03-16T19:12:52Z) - Boosting Modern and Historical Handwritten Text Recognition with
Deformable Convolutions [52.250269529057014]
Handwritten Text Recognition (HTR) in free-volution pages is a challenging image understanding task.
We propose to adopt deformable convolutions, which can deform depending on the input at hand and better adapt to the geometric variations of the text.
arXiv Detail & Related papers (2022-08-17T06:55:54Z) - Content and Style Aware Generation of Text-line Images for Handwriting
Recognition [4.301658883577544]
We propose a generative method for handwritten text-line images conditioned on both visual appearance and textual content.
Our method is able to produce long text-line samples with diverse handwriting styles.
arXiv Detail & Related papers (2022-04-12T05:52:03Z) - SLOGAN: Handwriting Style Synthesis for Arbitrary-Length and
Out-of-Vocabulary Text [35.83345711291558]
We propose a novel method that can synthesize parameterized and controllable handwriting Styles for arbitrary-Length and Out-of-vocabulary text.
We embed the text content by providing an easily obtainable printed style image, so that the diversity of the content can be flexibly achieved.
Our method can synthesize words that are not included in the training vocabulary and with various new styles.
arXiv Detail & Related papers (2022-02-23T12:13:27Z) - Generating More Pertinent Captions by Leveraging Semantics and Style on
Multi-Source Datasets [56.018551958004814]
This paper addresses the task of generating fluent descriptions by training on a non-uniform combination of data sources.
Large-scale datasets with noisy image-text pairs provide a sub-optimal source of supervision.
We propose to leverage and separate semantics and descriptive style through the incorporation of a style token and keywords extracted through a retrieval component.
arXiv Detail & Related papers (2021-11-24T19:00:05Z) - SmartPatch: Improving Handwritten Word Imitation with Patch
Discriminators [67.54204685189255]
We propose SmartPatch, a new technique increasing the performance of current state-of-the-art methods.
We combine the well-known patch loss with information gathered from the parallel trained handwritten text recognition system.
This leads to a more enhanced local discriminator and results in more realistic and higher-quality generated handwritten words.
arXiv Detail & Related papers (2021-05-21T18:34:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.