Efficiently catching entangled microwave photons from a quantum transducer with shaped optical pumps
- URL: http://arxiv.org/abs/2409.06108v1
- Date: Mon, 9 Sep 2024 23:31:15 GMT
- Title: Efficiently catching entangled microwave photons from a quantum transducer with shaped optical pumps
- Authors: Changchun Zhong,
- Abstract summary: Quantum transducer provides a practical way of coherently connecting optical communication channels and microwave quantum processors.
Recent experiments on quantum transducer verifying entanglement between microwave and optical photons show the promise of approaching that goal.
To efficiently capture or detect a single microwave photon with arbitrary time profile remains challenging.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum transducer, when working as a microwave and optical entanglement generator, provides a practical way of coherently connecting optical communication channels and microwave quantum processors. The recent experiments on quantum transducer verifying entanglement between microwave and optical photons show the promise of approaching that goal. While flying optical photons can be efficiently controlled or detected, the microwave photon needs to be stored in a cavity or converted to the excitation of superconducting qubit for further quantum operations. However, to efficiently capture or detect a single microwave photon with arbitrary time profile remains challenging. This work focuses on this challenge in the setting of entanglement-based quantum transducer and proposes a solution by shaping the optical pump pulse. By Schmidt decomposing the output entangled state, we show the microwave-optical photon pair takes a specific temporal profile that is controlled by the optical pump. The microwave photon from the transducer can be absorbed near perfectly by a receiving cavity with tunable coupling and is ready to be converted to the excitation of superconducting qubits, enabling further quantum operations.
Related papers
- Light-Induced Microwave Noise in Superconducting Microwave-Optical
Transducers [1.2874569408514918]
We study light-induced microwave noise in an integrated electro-optical transducer harnessing Pockels effect of thin film lithium niobate.
Our results gain insights into the mechanisms and corresponding mitigation strategies for light-induced microwave noise in superconducting microwave-optical transducers.
arXiv Detail & Related papers (2023-11-14T20:25:34Z) - Coherent optical control of a superconducting microwave cavity via
electro-optical dynamical back-action [0.0]
Quantum optical control of superconducting microwave circuits has been precluded so far due to the weak electro-optical coupling.
We report the coherent control of a superconducting microwave cavity using laser pulses in a multimode electro-optical device at millikelvin temperature.
arXiv Detail & Related papers (2022-10-22T13:21:48Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Large-bandwidth transduction between an optical single quantum-dot
molecule and a superconducting resonator [0.0]
We show that a large electric dipole moment of an exciton in an optically active quantum dot molecule (QDM) efficiently couples to a microwave resonator field at a single-photon level.
Thanks to the fast exciton decay rate in the QDM, the bandwidth between an optical and microwave resonator photon reaches several 100s of MHz.
arXiv Detail & Related papers (2021-10-07T07:28:27Z) - Complete conversion between one and two photons in nonlinear waveguides
with tailored dispersion [62.997667081978825]
We show theoretically how to control coherent conversion between a narrow-band pump photon and broadband photon pairs in nonlinear optical waveguides.
We reveal that complete deterministic conversion as well as pump-photon revival can be achieved at a finite propagation distance.
arXiv Detail & Related papers (2021-10-06T23:49:44Z) - Coherent control in the ground and optically excited state of an
ensemble of erbium dopants [55.41644538483948]
Ensembles of erbium dopants can realize quantum memories and frequency converters.
In this work, we use a split-ring microwave resonator to demonstrate such control in both the ground and optically excited state.
arXiv Detail & Related papers (2021-05-18T13:03:38Z) - Quantum transduction of optical photons from a superconducting qubit [0.0]
We demonstrate the conversion of a microwave-frequency excitation of a superconducting transmon qubit into an optical photon.
With proposed improvements in the device and external measurement set-up, such quantum transducers may lead to practical devices capable of realizing new hybrid quantum networks.
arXiv Detail & Related papers (2020-04-09T22:34:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.