Revisiting Prompt Pretraining of Vision-Language Models
- URL: http://arxiv.org/abs/2409.06166v1
- Date: Tue, 10 Sep 2024 02:36:13 GMT
- Title: Revisiting Prompt Pretraining of Vision-Language Models
- Authors: Zhenyuan Chen, Lingfeng Yang, Shuo Chen, Zhaowei Chen, Jiajun Liang, Xiang Li,
- Abstract summary: We propose a general framework termed Revisiting Prompt Pretraining (RPP)
RPP targets at improving the fitting and generalization ability from two aspects: prompt structure and prompt supervision.
We additionally utilize soft labels derived from zero-shot probability predictions provided by a pretrained Contrastive Language Image Pretraining (CLIP) teacher model.
- Score: 13.888505919946578
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prompt learning is an effective method to customize Vision-Language Models (VLMs) for various downstream tasks, involving tuning very few parameters of input prompt tokens. Recently, prompt pretraining in large-scale dataset (e.g., ImageNet-21K) has played a crucial role in prompt learning for universal visual discrimination. However, we revisit and observe that the limited learnable prompts could face underfitting risks given the extensive images during prompt pretraining, simultaneously leading to poor generalization. To address the above issues, in this paper, we propose a general framework termed Revisiting Prompt Pretraining (RPP), which targets at improving the fitting and generalization ability from two aspects: prompt structure and prompt supervision. For prompt structure, we break the restriction in common practice where query, key, and value vectors are derived from the shared learnable prompt token. Instead, we introduce unshared individual query, key, and value learnable prompts, thereby enhancing the model's fitting capacity through increased parameter diversity. For prompt supervision, we additionally utilize soft labels derived from zero-shot probability predictions provided by a pretrained Contrastive Language Image Pretraining (CLIP) teacher model. These soft labels yield more nuanced and general insights into the inter-class relationships, thereby endowing the pretraining process with better generalization ability. RPP produces a more resilient prompt initialization, enhancing its robust transferability across diverse visual recognition tasks. Experiments across various benchmarks consistently confirm the state-of-the-art (SOTA) performance of our pretrained prompts. Codes and models will be made available soon.
Related papers
- IPO: Interpretable Prompt Optimization for Vision-Language Models [40.83071220530289]
This paper introduces a simple but interpretable prompt (IPO)
IPO utilizes large language models (LLMs) to generate textual prompts dynamically.
We incorporate a large multimodal model (LMM) to condition on visual content by generating image descriptions.
arXiv Detail & Related papers (2024-10-20T14:10:22Z) - PRE: Vision-Language Prompt Learning with Reparameterization Encoder [24.855142164168605]
Large pre-trained vision-language models such as CLIP have demonstrated great potential in zero-shot transferability to downstream tasks.
To attain optimal performance, the manual selection of prompts is necessary to improve alignment between the downstream image distribution and the textual class descriptions.
To avoid non-trivial prompt engineering, recent work Context Optimization (CoOp) introduced the concept of prompt learning to the vision domain using learnable textual tokens.
arXiv Detail & Related papers (2023-09-14T14:48:01Z) - DPL: Decoupled Prompt Learning for Vision-Language Models [41.90997623029582]
We propose a new method, Decoupled Prompt Learning, which reformulates the attention in prompt learning to alleviate this problem.
Our approach is flexible for both visual and textual modalities, making it easily extendable to multi-modal prompt learning.
arXiv Detail & Related papers (2023-08-19T15:48:38Z) - Self-regulating Prompts: Foundational Model Adaptation without
Forgetting [112.66832145320434]
We introduce a self-regularization framework for prompting called PromptSRC.
PromptSRC guides the prompts to optimize for both task-specific and task-agnostic general representations.
arXiv Detail & Related papers (2023-07-13T17:59:35Z) - On the Role of Attention in Prompt-tuning [90.97555030446563]
We study prompt-tuning for one-layer attention architectures and study contextual mixture-models.
We show that softmax-prompt-attention is provably more expressive than softmax-self-attention and linear-prompt-attention.
We also provide experiments that verify our theoretical insights on real datasets and demonstrate how prompt-tuning enables the model to attend to context-relevant information.
arXiv Detail & Related papers (2023-06-06T06:23:38Z) - Retrieval-Enhanced Visual Prompt Learning for Few-shot Classification [9.843214426749764]
Retrieval-enhanced Prompt learning (RePrompt)
We propose Retrieval-enhanced Prompt learning (RePrompt), which introduces retrieval mechanisms to cache the knowledge representations from downstream tasks.
Our experiments over 15 vision datasets, including 11 downstream tasks with few-shot setting and 4 domain generalization benchmarks, demonstrate that RePrompt achieves considerably improved performance.
arXiv Detail & Related papers (2023-06-04T03:06:37Z) - CPL: Counterfactual Prompt Learning for Vision and Language Models [76.18024920393245]
This paper presents a novel underlinetextbfCounterfactual underlinetextbfPrompt underlinetextbfLearning (CPL) method for vision and language models.
CPL simultaneously employs counterfactual generation and contrastive learning in a joint optimization framework.
Experiments demonstrate that CPL can obtain superior few-shot performance on different vision and language tasks.
arXiv Detail & Related papers (2022-10-19T08:06:39Z) - MaPLe: Multi-modal Prompt Learning [54.96069171726668]
We propose Multi-modal Prompt Learning (MaPLe) for both vision and language branches to improve alignment between the vision and language representations.
Compared with the state-of-the-art method Co-CoOp, MaPLe exhibits favorable performance and achieves an absolute gain of 3.45% on novel classes.
arXiv Detail & Related papers (2022-10-06T17:59:56Z) - Bayesian Prompt Learning for Image-Language Model Generalization [64.50204877434878]
We use the regularization ability of Bayesian methods to frame prompt learning as a variational inference problem.
Our approach regularizes the prompt space, reduces overfitting to the seen prompts and improves the prompt generalization on unseen prompts.
We demonstrate empirically on 15 benchmarks that Bayesian prompt learning provides an appropriate coverage of the prompt space.
arXiv Detail & Related papers (2022-10-05T17:05:56Z) - Learning to Prompt for Vision-Language Models [82.25005817904027]
Vision-language pre-training has emerged as a promising alternative for representation learning.
It shifts from the tradition of using images and discrete labels for learning a fixed set of weights, seen as visual concepts, to aligning images and raw text for two separate encoders.
Such a paradigm benefits from a broader source of supervision and allows zero-shot transfer to downstream tasks.
arXiv Detail & Related papers (2021-09-02T17:57:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.