An End-to-End Approach for Chord-Conditioned Song Generation
- URL: http://arxiv.org/abs/2409.06307v1
- Date: Tue, 10 Sep 2024 08:07:43 GMT
- Title: An End-to-End Approach for Chord-Conditioned Song Generation
- Authors: Shuochen Gao, Shun Lei, Fan Zhuo, Hangyu Liu, Feng Liu, Boshi Tang, Qiaochu Huang, Shiyin Kang, Zhiyong Wu,
- Abstract summary: Song Generation task aims to synthesize music composed of vocals and accompaniment from given lyrics.
To mitigate the issue, we introduce an important concept from music composition, namely chords to song generation networks.
We propose a novel model termed Chord-Conditioned Song Generator (CSG) based on it.
- Score: 14.951089833579063
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Song Generation task aims to synthesize music composed of vocals and accompaniment from given lyrics. While the existing method, Jukebox, has explored this task, its constrained control over the generations often leads to deficiency in music performance. To mitigate the issue, we introduce an important concept from music composition, namely chords, to song generation networks. Chords form the foundation of accompaniment and provide vocal melody with associated harmony. Given the inaccuracy of automatic chord extractors, we devise a robust cross-attention mechanism augmented with dynamic weight sequence to integrate extracted chord information into song generations and reduce frame-level flaws, and propose a novel model termed Chord-Conditioned Song Generator (CSG) based on it. Experimental evidence demonstrates our proposed method outperforms other approaches in terms of musical performance and control precision of generated songs.
Related papers
- SongCreator: Lyrics-based Universal Song Generation [53.248473603201916]
SongCreator is a song-generation system designed to tackle the challenge of generating songs with both vocals and accompaniment given lyrics.
The model features two novel designs: a meticulously designed dual-sequence language model (M) to capture the information of vocals and accompaniment for song generation, and a series of attention mask strategies for DSLM.
Experiments demonstrate the effectiveness of SongCreator by achieving state-of-the-art or competitive performances on all eight tasks.
arXiv Detail & Related papers (2024-09-09T19:37:07Z) - MuDiT & MuSiT: Alignment with Colloquial Expression in Description-to-Song Generation [18.181382408551574]
We propose a novel task of Colloquial Description-to-Song Generation.
It focuses on aligning the generated content with colloquial human expressions.
This task is aimed at bridging the gap between colloquial language understanding and auditory expression within an AI model.
arXiv Detail & Related papers (2024-07-03T15:12:36Z) - Unsupervised Melody-to-Lyric Generation [91.29447272400826]
We propose a method for generating high-quality lyrics without training on any aligned melody-lyric data.
We leverage the segmentation and rhythm alignment between melody and lyrics to compile the given melody into decoding constraints.
Our model can generate high-quality lyrics that are more on-topic, singable, intelligible, and coherent than strong baselines.
arXiv Detail & Related papers (2023-05-30T17:20:25Z) - Unsupervised Melody-Guided Lyrics Generation [84.22469652275714]
We propose to generate pleasantly listenable lyrics without training on melody-lyric aligned data.
We leverage the crucial alignments between melody and lyrics and compile the given melody into constraints to guide the generation process.
arXiv Detail & Related papers (2023-05-12T20:57:20Z) - Chord-Conditioned Melody Choralization with Controllable Harmonicity and
Polyphonicity [75.02344976811062]
Melody choralization, i.e. generating a four-part chorale based on a user-given melody, has long been closely associated with J.S. Bach chorales.
Previous neural network-based systems rarely focus on chorale generation conditioned on a chord progression.
We propose DeepChoir, a melody choralization system, which can generate a four-part chorale for a given melody conditioned on a chord progression.
arXiv Detail & Related papers (2022-02-17T02:59:36Z) - Generating Lead Sheets with Affect: A Novel Conditional seq2seq
Framework [3.029434408969759]
We present a novel approach for calculating the positivity or negativity of a chord progression within a lead sheet.
Our approach is similar to a Neural Machine Translation (NMT) problem, as we include high-level conditions in the encoder part of the sequence-to-sequence architectures.
The proposed strategy is able to generate lead sheets in a controllable manner, resulting in distributions of musical attributes similar to those of the training dataset.
arXiv Detail & Related papers (2021-04-27T09:04:21Z) - Melody-Conditioned Lyrics Generation with SeqGANs [81.2302502902865]
We propose an end-to-end melody-conditioned lyrics generation system based on Sequence Generative Adversarial Networks (SeqGAN)
We show that the input conditions have no negative impact on the evaluation metrics while enabling the network to produce more meaningful results.
arXiv Detail & Related papers (2020-10-28T02:35:40Z) - Learning Interpretable Representation for Controllable Polyphonic Music
Generation [5.01266258109807]
We design a novel architecture, that effectively learns two interpretable latent factors of polyphonic music: chord and texture.
We show that such chord-texture disentanglement provides a controllable generation pathway leading to a wide spectrum of applications.
arXiv Detail & Related papers (2020-08-17T07:11:16Z) - Unsupervised Cross-Domain Singing Voice Conversion [105.1021715879586]
We present a wav-to-wav generative model for the task of singing voice conversion from any identity.
Our method utilizes both an acoustic model, trained for the task of automatic speech recognition, together with melody extracted features to drive a waveform-based generator.
arXiv Detail & Related papers (2020-08-06T18:29:11Z) - Continuous Melody Generation via Disentangled Short-Term Representations
and Structural Conditions [14.786601824794369]
We present a model for composing melodies given a user specified symbolic scenario combined with a previous music context.
Our model is capable of generating long melodies by regarding 8-beat note sequences as basic units, and shares consistent rhythm pattern structure with another specific song.
Results show that the music generated by our model tends to have salient repetition structures, rich motives, and stable rhythm patterns.
arXiv Detail & Related papers (2020-02-05T06:23:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.