Learning Generative Interactive Environments By Trained Agent Exploration
- URL: http://arxiv.org/abs/2409.06445v2
- Date: Fri, 18 Oct 2024 17:37:51 GMT
- Title: Learning Generative Interactive Environments By Trained Agent Exploration
- Authors: Naser Kazemi, Nedko Savov, Danda Paudel, Luc Van Gool,
- Abstract summary: We propose to improve the model by employing reinforcement learning based agents for data generation.
This approach produces diverse datasets that enhance the model's ability to adapt and perform well.
Our evaluation, including a replication of the Coinrun case study, shows that GenieRedux-G achieves superior visual fidelity and controllability.
- Score: 41.94295877935867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: World models are increasingly pivotal in interpreting and simulating the rules and actions of complex environments. Genie, a recent model, excels at learning from visually diverse environments but relies on costly human-collected data. We observe that their alternative method of using random agents is too limited to explore the environment. We propose to improve the model by employing reinforcement learning based agents for data generation. This approach produces diverse datasets that enhance the model's ability to adapt and perform well across various scenarios and realistic actions within the environment. In this paper, we first release the model GenieRedux - an implementation based on Genie. Additionally, we introduce GenieRedux-G, a variant that uses the agent's readily available actions to factor out action prediction uncertainty during validation. Our evaluation, including a replication of the Coinrun case study, shows that GenieRedux-G achieves superior visual fidelity and controllability using the trained agent exploration. The proposed approach is reproducable, scalable and adaptable to new types of environments. Our codebase is available at https://github.com/insait-institute/GenieRedux .
Related papers
- Exploration-Driven Generative Interactive Environments [53.05314852577144]
We focus on using many virtual environments for inexpensive, automatically collected interaction data.
We propose a training framework merely using a random agent in virtual environments.
Our agent is fully independent of environment-specific rewards and thus adapts easily to new environments.
arXiv Detail & Related papers (2025-04-03T12:01:41Z) - OpenWebVoyager: Building Multimodal Web Agents via Iterative Real-World Exploration, Feedback and Optimization [66.22117723598872]
We introduce an open-source framework designed to facilitate the development of multimodal web agent.
We first train the base model with imitation learning to gain the basic abilities.
We then let the agent explore the open web and collect feedback on its trajectories.
arXiv Detail & Related papers (2024-10-25T15:01:27Z) - Diffusion Augmented Agents: A Framework for Efficient Exploration and Transfer Learning [6.06616040517684]
DAAG hindsight relabels the agent's past experience by using diffusion models to transform videos.
Large language model orchestrates this autonomous process without requiring human supervision.
Results show that DAAG improves learning of reward detectors, transferring past experience, and acquiring new tasks.
arXiv Detail & Related papers (2024-07-30T13:01:31Z) - AgentGym: Evolving Large Language Model-based Agents across Diverse Environments [116.97648507802926]
Large language models (LLMs) are considered a promising foundation to build such agents.
We take the first step towards building generally-capable LLM-based agents with self-evolution ability.
We propose AgentGym, a new framework featuring a variety of environments and tasks for broad, real-time, uni-format, and concurrent agent exploration.
arXiv Detail & Related papers (2024-06-06T15:15:41Z) - RealGen: Retrieval Augmented Generation for Controllable Traffic Scenarios [58.62407014256686]
RealGen is a novel retrieval-based in-context learning framework for traffic scenario generation.
RealGen synthesizes new scenarios by combining behaviors from multiple retrieved examples in a gradient-free way.
This in-context learning framework endows versatile generative capabilities, including the ability to edit scenarios.
arXiv Detail & Related papers (2023-12-19T23:11:06Z) - Fine-Tuning Generative Models as an Inference Method for Robotic Tasks [18.745665662647912]
We investigate how to quickly adapt the sample generation of neural network models to observations in robotic tasks.
The key idea is to quickly fine-tune the model by fitting it to generated samples matching the observed evidence.
We show that our method can be applied to both autoregressive models and variational autoencoders.
arXiv Detail & Related papers (2023-10-19T16:11:49Z) - STORM: Efficient Stochastic Transformer based World Models for
Reinforcement Learning [82.03481509373037]
Recently, model-based reinforcement learning algorithms have demonstrated remarkable efficacy in visual input environments.
We introduce Transformer-based wORld Model (STORM), an efficient world model architecture that combines strong modeling and generation capabilities.
Storm achieves a mean human performance of $126.7%$ on the Atari $100$k benchmark, setting a new record among state-of-the-art methods.
arXiv Detail & Related papers (2023-10-14T16:42:02Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
We propose a meta-learned addressing model called RAMa that provides training samples for the MBRL agent taken from task-agnostic storage.
The model is trained to maximize the expected agent's performance by selecting promising trajectories solving prior tasks from the storage.
arXiv Detail & Related papers (2021-10-25T20:02:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.