Modeling of a continuous superradiant laser on the sub-mHz $^1$S$_0\,\rightarrow\,^3$P$_0$ transition in neutral strontium-88
- URL: http://arxiv.org/abs/2409.06575v2
- Date: Wed, 11 Sep 2024 12:54:37 GMT
- Title: Modeling of a continuous superradiant laser on the sub-mHz $^1$S$_0\,\rightarrow\,^3$P$_0$ transition in neutral strontium-88
- Authors: Swadheen Dubey, Georgy A. Kazakov, Benedikt Heizenreder, Sheng Zhou, Shayne Bennetts, Stefan Alaric Schäffer, Ananya Sitaram, Florian Schreck,
- Abstract summary: Superradiant emission on a mHz linewidth clock transition has been shown, but true continuous operation has turned out to be extremely challenging.
We discuss the design of a machine that could overcome this problem by combining a high-flux continuous beam of ultra cold strontium atoms with a bowtie cavity.
We estimate a laser linewidth of less than 100 mHz, limited by atom number fluctuations, and resulting in an output power of hundreds of fW.
- Score: 4.318157997343946
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continuous superradiance using a narrow optical transition has the potential to improve the short-term stability of state-of-the-art optical clocks. Even though pulsed superradiant emission on a mHz linewidth clock transition has been shown, true continuous operation, without Fourier limitation, has turned out to be extremely challenging. The trade-off between maintaining a high atomic flux while minimizing decoherence effects presents a significant obstacle. Here, we discuss the design of a machine that could overcome this problem by combining a high-flux continuous beam of ultra cold strontium atoms with a bowtie cavity for the generation of superradiant lasing. To evaluate the feasibility of our design, we present simulation results for continuous high-efficiency cooling, loading, and pumping to the upper lasing state inside the bowtie cavity. We then present two different models for stimulating the generated superradiant field by taking into account position-dependent shifts, collisional decoherence, light shifts, and atom loss. Finally, we estimate a laser linewidth of less than 100 mHz, limited by atom number fluctuations, and resulting in an output power of hundreds of fW.
Related papers
- A superradiant two-level laser with intrinsic light force generated gain [0.0]
We propose a new scenario for creating continuous gain by using optical forces acting on the states of a two-level atom.
We study minimal conditions on pump laser intensities and detunings required for collective superradiant emission.
arXiv Detail & Related papers (2023-04-25T23:10:55Z) - Wavefront Curvature in Optical Atomic Beam Clocks [0.0]
Recent demonstrations of compact optical clocks, employing thermal atomic beams, have achieved short-term fractional frequency instabilities in the $10-16$.
A serious challenge inherent in compact clocks is the necessarily smaller optical beams, which results in rapid variation in interrogating wavefronts.
Here we develop a model for Ramsey-Bord'e interferometery using optical fields with curved wavefronts.
arXiv Detail & Related papers (2022-12-01T06:57:23Z) - Robustness of the Floquet-assisted superradiant phase and possible laser
operation [0.0]
We show the robustness of the recently established Floquet-assisted superradiant phase of the parametrically driven dissipative Dicke model.
We argue for the feasibility of utilizing it for laser operation.
arXiv Detail & Related papers (2022-11-02T17:41:53Z) - Resolving Fock states near the Kerr-free point of a superconducting
resonator [51.03394077656548]
We have designed a tunable nonlinear resonator terminated by a SNAIL (Superconducting Asymmetric Inductive eLement)
We have excited photons near this Kerr-free point and characterized the device using a transmon qubit.
arXiv Detail & Related papers (2022-10-18T09:55:58Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Spectral multiplexing of telecom emitters with stable transition
frequency [68.8204255655161]
coherent emitters can be entangled over large distances using photonic channels.
We observe around 100 individual erbium emitters using a Fabry-Perot resonator with an embedded 19 micrometer thin crystalline membrane.
Our results constitute an important step towards frequency-multiplexed quantum-network nodes operating directly at a telecommunication wavelength.
arXiv Detail & Related papers (2021-10-18T15:39:07Z) - Multimode-polariton superradiance via Floquet engineering [55.41644538483948]
We consider an ensemble of ultracold bosonic atoms within a near-planar cavity, driven by a far detuned laser.
We show that a strong, dispersive atom-photon coupling can be reached for many transverse cavity modes at once.
The resulting Floquet polaritons involve a superposition of a set of cavity modes with a density of excitation of the atomic cloud.
arXiv Detail & Related papers (2020-11-24T19:00:04Z) - Regular and bistable steady-state superradiant phases of an atomic beam
traversing an optical cavity [1.3854111346209868]
We investigate the different photon emission regimes created by a preexcited and collimated atomic beam passing through a single mode of an optical cavity.
We analyze the different superradiant regimes and the quantum critical crossover boundaries.
arXiv Detail & Related papers (2020-09-11T20:31:52Z) - Continuous narrowband lasing with coherently driven V-level atoms [0.0]
coherent pumping of two transitions of a V-level atom with very differentdecay rates has been predicted to create almost perfect inversion on the narrower transition.
We show that for suitable operatingconditions the corresponding resonant gain can be used to continuously operate a laser on the narrow transition.
arXiv Detail & Related papers (2020-07-24T13:40:44Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.