Interactive 3D Segmentation for Primary Gross Tumor Volume in Oropharyngeal Cancer
- URL: http://arxiv.org/abs/2409.06605v1
- Date: Tue, 10 Sep 2024 15:58:21 GMT
- Title: Interactive 3D Segmentation for Primary Gross Tumor Volume in Oropharyngeal Cancer
- Authors: Mikko Saukkoriipi, Jaakko Sahlsten, Joel Jaskari, Lotta Orasmaa, Jari Kangas, Nastaran Rasouli, Roope Raisamo, Jussi Hirvonen, Helena Mehtonen, Jorma Järnstedt, Antti Mäkitie, Mohamed Naser, Clifton Fuller, Benjamin Kann, Kimmo Kaski,
- Abstract summary: We implement state-of-the-art algorithms and propose a novel two-stage Interactive Click Refinement framework.
The 2S-ICR framework achieves a Dice similarity coefficient of 0.713 $pm$ 0.152 without user interaction and 0.824 $pm$ 0.099 after five interactions, outperforming existing methods in both cases.
- Score: 1.9997842016096374
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The main treatment modality for oropharyngeal cancer (OPC) is radiotherapy, where accurate segmentation of the primary gross tumor volume (GTVp) is essential. However, accurate GTVp segmentation is challenging due to significant interobserver variability and the time-consuming nature of manual annotation, while fully automated methods can occasionally fail. An interactive deep learning (DL) model offers the advantage of automatic high-performance segmentation with the flexibility for user correction when necessary. In this study, we examine interactive DL for GTVp segmentation in OPC. We implement state-of-the-art algorithms and propose a novel two-stage Interactive Click Refinement (2S-ICR) framework. Using the 2021 HEad and neCK TumOR (HECKTOR) dataset for development and an external dataset from The University of Texas MD Anderson Cancer Center for evaluation, the 2S-ICR framework achieves a Dice similarity coefficient of 0.713 $\pm$ 0.152 without user interaction and 0.824 $\pm$ 0.099 after five interactions, outperforming existing methods in both cases.
Related papers
- Two Stage Segmentation of Cervical Tumors using PocketNet [0.32985979395737786]
This work applied a novel deep-learning model (PocketNet) to segment the cervix, vagina, uterus, and tumor(s) on T2w MRI.
PocketNet achieved a mean Dice-Sorensen similarity coefficient (DSC) exceeding 70% for tumor segmentation and 80% for organ segmentation.
arXiv Detail & Related papers (2024-09-17T17:48:12Z) - Towards a Benchmark for Colorectal Cancer Segmentation in Endorectal Ultrasound Videos: Dataset and Model Development [59.74920439478643]
In this paper, we collect and annotated the first benchmark dataset that covers diverse ERUS scenarios.
Our ERUS-10K dataset comprises 77 videos and 10,000 high-resolution annotated frames.
We introduce a benchmark model for colorectal cancer segmentation, named the Adaptive Sparse-context TRansformer (ASTR)
arXiv Detail & Related papers (2024-08-19T15:04:42Z) - TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
In this study we extended the capabilities of TotalSegmentator to MR images.
We trained an nnU-Net segmentation algorithm on this dataset and calculated similarity coefficients (Dice) to evaluate the model's performance.
The model significantly outperformed two other publicly available segmentation models (Dice score 0.824 versus 0.762; p0.001 and 0.762 versus 0.542; p)
arXiv Detail & Related papers (2024-05-29T20:15:54Z) - Automated Prediction of Breast Cancer Response to Neoadjuvant Chemotherapy from DWI Data [2.321323878201932]
We propose a deep learning model employing "Size-Adaptive Lesion Weighting" for automatic DWI tumor segmentation.
Our model matches human experts in pCR prediction pre-NAC with an area under the curve (AUC) of 0.76 vs. 0.796, and surpasses standard automated methods mid-NAC.
arXiv Detail & Related papers (2024-04-07T20:15:40Z) - Application of the nnU-Net for automatic segmentation of lung lesion on
CT images, and implication on radiomic models [1.8231394717039833]
A deep-learning automatic segmentation method was applied on computed tomography images of non-small-cell lung cancer patients.
The use of manual vs automatic segmentation in the performance of survival radiomic models was assessed, as well.
arXiv Detail & Related papers (2022-09-24T15:04:23Z) - CNN-based fully automatic wrist cartilage volume quantification in MR
Image [55.41644538483948]
The U-net convolutional neural network with additional attention layers provides the best wrist cartilage segmentation performance.
The error of cartilage volume measurement should be assessed independently using a non-MRI method.
arXiv Detail & Related papers (2022-06-22T14:19:06Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Multimodal PET/CT Tumour Segmentation and Prediction of Progression-Free
Survival using a Full-Scale UNet with Attention [0.8138288420049126]
The MICCAI 2021 HEad and neCK TumOR (HECKTOR) segmentation and outcome prediction challenge creates a platform for comparing segmentation methods.
We trained multiple neural networks for tumor volume segmentation, and these segmentations were ensembled achieving an average Dice Similarity Coefficient of 0.75 in cross-validation.
For prediction of patient progression free survival task, we propose a Cox proportional hazard regression combining clinical, radiomic, and deep learning features.
arXiv Detail & Related papers (2021-11-06T10:28:48Z) - Systematic Clinical Evaluation of A Deep Learning Method for Medical
Image Segmentation: Radiosurgery Application [48.89674088331313]
We systematically evaluate a Deep Learning (DL) method in a 3D medical image segmentation task.
Our method is integrated into the radiosurgery treatment process and directly impacts the clinical workflow.
arXiv Detail & Related papers (2021-08-21T16:15:40Z) - Covariance Self-Attention Dual Path UNet for Rectal Tumor Segmentation [5.161531917413708]
We propose a Covariance Self-Attention Dual Path UNet (CSA-DPUNet) to increase the capability of extracting enough feature information for rectal tumor segmentation.
Experiments show that CSA-DPUNet brings 15.31%, 7.2%, 7.2%, 11.8%, and 9.5% improvement in Dice coefficient, P, R, F1, respectively.
arXiv Detail & Related papers (2020-11-04T08:01:19Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.