Liability and Insurance for Catastrophic Losses: the Nuclear Power Precedent and Lessons for AI
- URL: http://arxiv.org/abs/2409.06673v1
- Date: Tue, 10 Sep 2024 17:41:31 GMT
- Title: Liability and Insurance for Catastrophic Losses: the Nuclear Power Precedent and Lessons for AI
- Authors: Cristian Trout,
- Abstract summary: This paper argues that developers of frontier AI models should be assigned limited, strict, and exclusive third party liability for harms resulting from Critical AI Occurrences (CAIOs)
Mandatory insurance for CAIO liability is recommended to overcome developers' judgment-proofness, winner's curse dynamics, and leverage insurers' quasi-regulatory abilities.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As AI systems become more autonomous and capable, experts warn of them potentially causing catastrophic losses. Drawing on the successful precedent set by the nuclear power industry, this paper argues that developers of frontier AI models should be assigned limited, strict, and exclusive third party liability for harms resulting from Critical AI Occurrences (CAIOs) - events that cause or easily could have caused catastrophic losses. Mandatory insurance for CAIO liability is recommended to overcome developers' judgment-proofness, mitigate winner's curse dynamics, and leverage insurers' quasi-regulatory abilities. Based on theoretical arguments and observations from the analogous nuclear power context, insurers are expected to engage in a mix of causal risk-modeling, monitoring, lobbying for stricter regulation, and providing loss prevention guidance in the context of insuring against heavy-tail risks from AI. While not a substitute for regulation, clear liability assignment and mandatory insurance can help efficiently allocate resources to risk-modeling and safe design, facilitating future regulatory efforts.
Related papers
- Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
Key requirements for trustworthy AI can be translated into design choices for the components of empirical risk minimization.
We hope to provide actionable guidance for building AI systems that meet emerging standards for trustworthiness of AI.
arXiv Detail & Related papers (2024-10-25T07:53:32Z) - A Zero Trust Framework for Realization and Defense Against Generative AI
Attacks in Power Grid [62.91192307098067]
This paper proposes a novel zero trust framework for a power grid supply chain (PGSC)
It facilitates early detection of potential GenAI-driven attack vectors, assessment of tail risk-based stability measures, and mitigation of such threats.
Experimental results show that the proposed zero trust framework achieves an accuracy of 95.7% on attack vector generation, a risk measure of 9.61% for a 95% stable PGSC, and a 99% confidence in defense against GenAI-driven attack.
arXiv Detail & Related papers (2024-03-11T02:47:21Z) - Computing Power and the Governance of Artificial Intelligence [51.967584623262674]
Governments and companies have started to leverage compute as a means to govern AI.
compute-based policies and technologies have the potential to assist in these areas, but there is significant variation in their readiness for implementation.
naive or poorly scoped approaches to compute governance carry significant risks in areas like privacy, economic impacts, and centralization of power.
arXiv Detail & Related papers (2024-02-13T21:10:21Z) - What's my role? Modelling responsibility for AI-based safety-critical
systems [1.0549609328807565]
It is difficult for developers and manufacturers to be held responsible for harmful behaviour of an AI-SCS.
A human operator can become a "liability sink" absorbing blame for the consequences of AI-SCS outputs they weren't responsible for creating.
This paper considers different senses of responsibility (role, moral, legal and causal), and how they apply in the context of AI-SCS safety.
arXiv Detail & Related papers (2023-12-30T13:45:36Z) - A risk-based approach to assessing liability risk for AI-driven harms
considering EU liability directive [0.0]
Historical instances of harm caused by AI have led to European Union establishing an AI Liability Directive.
The future ability of provider to contest a product liability claim will depend on good practices adopted in designing, developing, and maintaining AI systems.
This paper provides a risk-based approach to examining liability for AI-driven injuries.
arXiv Detail & Related papers (2023-12-18T15:52:43Z) - The risks of risk-based AI regulation: taking liability seriously [46.90451304069951]
The development and regulation of AI seems to have reached a critical stage.
Some experts are calling for a moratorium on the training of AI systems more powerful than GPT-4.
This paper analyses the most advanced legal proposal, the European Union's AI Act.
arXiv Detail & Related papers (2023-11-03T12:51:37Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - Frontier AI Regulation: Managing Emerging Risks to Public Safety [15.85618115026625]
"Frontier AI" models could possess dangerous capabilities sufficient to pose severe risks to public safety.
Industry self-regulation is an important first step.
We propose an initial set of safety standards.
arXiv Detail & Related papers (2023-07-06T17:03:25Z) - AI Liability Insurance With an Example in AI-Powered E-diagnosis System [22.102728605081534]
We use an AI-powered E-diagnosis system as an example to study AI liability insurance.
We show that AI liability insurance can act as a regulatory mechanism to incentivize compliant behaviors and serve as a certificate of high-quality AI systems.
arXiv Detail & Related papers (2023-06-01T21:03:47Z) - Three lines of defense against risks from AI [0.0]
It is not always clear who is responsible for AI risk management.
The Three Lines of Defense (3LoD) model is considered best practice in many industries.
I suggest ways in which AI companies could implement the model.
arXiv Detail & Related papers (2022-12-16T09:33:00Z) - Overcoming Failures of Imagination in AI Infused System Development and
Deployment [71.9309995623067]
NeurIPS 2020 requested that research paper submissions include impact statements on "potential nefarious uses and the consequences of failure"
We argue that frameworks of harms must be context-aware and consider a wider range of potential stakeholders, system affordances, as well as viable proxies for assessing harms in the widest sense.
arXiv Detail & Related papers (2020-11-26T18:09:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.