LIME: Less Is More for MLLM Evaluation
- URL: http://arxiv.org/abs/2409.06851v3
- Date: Sun, 13 Oct 2024 18:11:26 GMT
- Title: LIME: Less Is More for MLLM Evaluation
- Authors: King Zhu, Qianbo Zang, Shian Jia, Siwei Wu, Feiteng Fang, Yizhi Li, Shawn Gavin, Tuney Zheng, Jiawei Guo, Bo Li, Haoning Wu, Xingwei Qu, Jian Yang, Zachary Liu, Xiang Yue, J. H. Liu, Chenghua Lin, Min Yang, Shiwen Ni, Wenhao Huang, Ge Zhang,
- Abstract summary: We propose LIME (Less Is More for MLLM Evaluation), a benchmark curated through a semi-automated pipeline.
This pipeline filters out uninformative samples and eliminates answer leakage by focusing on tasks that necessitate image-based understanding.
Our experiments indicate that LIME reduces the number of samples by 76% and evaluation time by 77%, while also providing a more effective means of distinguishing the capabilities of different models.
- Score: 36.29820380945517
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal Large Language Models (MLLMs) are evaluated on various benchmarks, such as image captioning, visual question answering, and reasoning. However, many of these benchmarks include overly simple or uninformative samples, complicating the effective distinction of different MLLMs' performance. Furthermore, evaluating models across numerous benchmarks incurs a significant computational burden. To address these issues, we propose LIME (Less Is More for MLLM Evaluation), a refined and efficient benchmark curated through a semi-automated pipeline. This pipeline filters out uninformative samples and eliminates answer leakage by focusing on tasks that necessitate image-based understanding. Our experiments indicate that LIME reduces the number of samples by 76% and evaluation time by 77%, while also providing a more effective means of distinguishing the capabilities of different models. Notably, we find that traditional automatic metrics, such as CIDEr, are inadequate for assessing MLLMs' captioning performance; excluding the caption task score yields a more accurate reflection of overall model performance. All code and data are available at https://github.com/kangreen0210/LIME.
Related papers
- SpecTool: A Benchmark for Characterizing Errors in Tool-Use LLMs [77.79172008184415]
SpecTool is a new benchmark to identify error patterns in LLM output on tool-use tasks.
We show that even the most prominent LLMs exhibit these error patterns in their outputs.
Researchers can use the analysis and insights from SPECTOOL to guide their error mitigation strategies.
arXiv Detail & Related papers (2024-11-20T18:56:22Z) - RepEval: Effective Text Evaluation with LLM Representation [55.26340302485898]
RepEval is a metric that leverages the projection of Large Language Models (LLMs) representations for evaluation.
Our work underscores the richness of information regarding text quality embedded within LLM representations, offering insights for the development of new metrics.
arXiv Detail & Related papers (2024-04-30T13:50:55Z) - Are We on the Right Way for Evaluating Large Vision-Language Models? [92.5761176224556]
Large vision-language models (LVLMs) have recently achieved rapid progress, sparking numerous studies to evaluate their multi-modal capabilities.
We identify two primary issues: Visual content is unnecessary for many samples and intentional data leakage exists.
We present MMStar, an elite vision-indispensable multi-modal benchmark comprising 1,500 samples meticulously selected by humans.
arXiv Detail & Related papers (2024-03-29T17:59:34Z) - tinyBenchmarks: evaluating LLMs with fewer examples [42.95407654805037]
We release evaluation tools and tiny versions of popular benchmarks: Open LLM Leaderboard, MMLU, HELM, and AlpacaEval 2.0.
Our empirical analysis demonstrates that these tools and tiny benchmarks are sufficient to reliably and efficiently reproduce the original evaluation results.
arXiv Detail & Related papers (2024-02-22T22:05:23Z) - GenCeption: Evaluate Multimodal LLMs with Unlabeled Unimodal Data [3.08543976986593]
Multimodal Large Language Models (MLLMs) are typically assessed using expensive annotated multimodal benchmarks.
This paper outlines and validates GenCeption, a novel, annotation-free evaluation method.
It requires only unimodal data to measure inter-modality semantic coherence and inversely assesses MLLMs' tendency to hallucinate.
arXiv Detail & Related papers (2024-02-22T21:22:04Z) - The Instinctive Bias: Spurious Images lead to Illusion in MLLMs [34.91795817316696]
We identify a typical class of inputs that baffles MLLMs, which consist of images that are highly relevant but inconsistent with answers.
We propose CorrelationQA, the first benchmark that assesses the visual illusion level given spurious images.
We conduct a thorough analysis on 9 mainstream MLLMs, illustrating that they universally suffer from this instinctive bias to varying degrees.
arXiv Detail & Related papers (2024-02-06T06:48:46Z) - MLLM-Bench: Evaluating Multimodal LLMs with Per-sample Criteria [49.500322937449326]
Multimodal large language models (MLLMs) have broadened the scope of AI applications.
Existing automatic evaluation methodologies for MLLMs are mainly limited in evaluating queries without considering user experiences.
We propose a new evaluation paradigm for MLLMs, which is evaluating MLLMs with per-sample criteria using potent MLLM as the judge.
arXiv Detail & Related papers (2023-11-23T12:04:25Z) - InfiMM-Eval: Complex Open-Ended Reasoning Evaluation For Multi-Modal
Large Language Models [50.03163753638256]
Multi-modal Large Language Models (MLLMs) are increasingly prominent in the field of artificial intelligence.
Our benchmark comprises three key reasoning categories: deductive, abductive, and analogical reasoning.
We evaluate a selection of representative MLLMs using this rigorously developed open-ended multi-step elaborate reasoning benchmark.
arXiv Detail & Related papers (2023-11-20T07:06:31Z) - MME: A Comprehensive Evaluation Benchmark for Multimodal Large Language Models [73.86954509967416]
Multimodal Large Language Model (MLLM) relies on the powerful LLM to perform multimodal tasks.
This paper presents the first comprehensive MLLM Evaluation benchmark MME.
It measures both perception and cognition abilities on a total of 14 subtasks.
arXiv Detail & Related papers (2023-06-23T09:22:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.