ExIQA: Explainable Image Quality Assessment Using Distortion Attributes
- URL: http://arxiv.org/abs/2409.06853v1
- Date: Tue, 10 Sep 2024 20:28:14 GMT
- Title: ExIQA: Explainable Image Quality Assessment Using Distortion Attributes
- Authors: Sepehr Kazemi Ranjbar, Emad Fatemizadeh,
- Abstract summary: We propose an explainable approach for distortion identification based on attribute learning.
We generate a dataset consisting of 100,000 images for efficient training.
Our approach achieves state-of-the-art (SOTA) performance across multiple datasets in both PLCC and SRCC metrics.
- Score: 0.3683202928838613
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Blind Image Quality Assessment (BIQA) aims to develop methods that estimate the quality scores of images in the absence of a reference image. In this paper, we approach BIQA from a distortion identification perspective, where our primary goal is to predict distortion types and strengths using Vision-Language Models (VLMs), such as CLIP, due to their extensive knowledge and generalizability. Based on these predicted distortions, we then estimate the quality score of the image. To achieve this, we propose an explainable approach for distortion identification based on attribute learning. Instead of prompting VLMs with the names of distortions, we prompt them with the attributes or effects of distortions and aggregate this information to infer the distortion strength. Additionally, we consider multiple distortions per image, making our method more scalable. To support this, we generate a dataset consisting of 100,000 images for efficient training. Finally, attribute probabilities are retrieved and fed into a regressor to predict the image quality score. The results show that our approach, besides its explainability and transparency, achieves state-of-the-art (SOTA) performance across multiple datasets in both PLCC and SRCC metrics. Moreover, the zero-shot results demonstrate the generalizability of the proposed approach.
Related papers
- Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
Image Quality Assessment (IQA) models benefit significantly from semantic information, which allows them to treat different types of objects distinctly.
Traditional methods, hindered by a lack of sufficiently annotated data, have employed the CLIP image-text pretraining model as their backbone to gain semantic awareness.
Recent approaches have attempted to address this mismatch using prompt technology, but these solutions have shortcomings.
This paper introduces an innovative multi-modal prompt-based methodology for IQA.
arXiv Detail & Related papers (2024-04-23T11:45:32Z) - Benchmark Generation Framework with Customizable Distortions for Image
Classifier Robustness [4.339574774938128]
We present a novel framework for generating adversarial benchmarks to evaluate the robustness of image classification models.
Our framework allows users to customize the types of distortions to be optimally applied to images, which helps address the specific distortions relevant to their deployment.
arXiv Detail & Related papers (2023-10-28T07:40:42Z) - ARNIQA: Learning Distortion Manifold for Image Quality Assessment [28.773037051085318]
No-Reference Image Quality Assessment (NR-IQA) aims to develop methods to measure image quality in alignment with human perception without the need for a high-quality reference image.
We propose a self-supervised approach named ARNIQA for modeling the image distortion manifold to obtain quality representations in an intrinsic manner.
arXiv Detail & Related papers (2023-10-20T17:22:25Z) - Exploring CLIP for Assessing the Look and Feel of Images [87.97623543523858]
We introduce Contrastive Language-Image Pre-training (CLIP) models for assessing both the quality perception (look) and abstract perception (feel) of images in a zero-shot manner.
Our results show that CLIP captures meaningful priors that generalize well to different perceptual assessments.
arXiv Detail & Related papers (2022-07-25T17:58:16Z) - Conformer and Blind Noisy Students for Improved Image Quality Assessment [80.57006406834466]
Learning-based approaches for perceptual image quality assessment (IQA) usually require both the distorted and reference image for measuring the perceptual quality accurately.
In this work, we explore the performance of transformer-based full-reference IQA models.
We also propose a method for IQA based on semi-supervised knowledge distillation from full-reference teacher models into blind student models.
arXiv Detail & Related papers (2022-04-27T10:21:08Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
We train a deep Convolutional Neural Network (CNN) using a contrastive pairwise objective to solve the auxiliary problem.
We show through extensive experiments that CONTRIQUE achieves competitive performance when compared to state-of-the-art NR image quality models.
Our results suggest that powerful quality representations with perceptual relevance can be obtained without requiring large labeled subjective image quality datasets.
arXiv Detail & Related papers (2021-10-25T21:01:00Z) - No-Reference Image Quality Assessment by Hallucinating Pristine Features [24.35220427707458]
We propose a no-reference (NR) image quality assessment (IQA) method via feature level pseudo-reference (PR) hallucination.
The effectiveness of our proposed method is demonstrated on four popular IQA databases.
arXiv Detail & Related papers (2021-08-09T16:48:34Z) - Inducing Predictive Uncertainty Estimation for Face Recognition [102.58180557181643]
We propose a method for generating image quality training data automatically from'mated-pairs' of face images.
We use the generated data to train a lightweight Predictive Confidence Network, termed as PCNet, for estimating the confidence score of a face image.
arXiv Detail & Related papers (2020-09-01T17:52:00Z) - Uncertainty-Aware Blind Image Quality Assessment in the Laboratory and
Wild [98.48284827503409]
We develop a textitunified BIQA model and an approach of training it for both synthetic and realistic distortions.
We employ the fidelity loss to optimize a deep neural network for BIQA over a large number of such image pairs.
Experiments on six IQA databases show the promise of the learned method in blindly assessing image quality in the laboratory and wild.
arXiv Detail & Related papers (2020-05-28T13:35:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.