AdaPPA: Adaptive Position Pre-Fill Jailbreak Attack Approach Targeting LLMs
- URL: http://arxiv.org/abs/2409.07503v1
- Date: Wed, 11 Sep 2024 00:00:58 GMT
- Title: AdaPPA: Adaptive Position Pre-Fill Jailbreak Attack Approach Targeting LLMs
- Authors: Lijia Lv, Weigang Zhang, Xuehai Tang, Jie Wen, Feng Liu, Jizhong Han, Songlin Hu,
- Abstract summary: We propose an adaptive position pre-fill jailbreak attack approach for executing jailbreak attacks on Large Language Models (LLMs)
Our method leverages the model's instruction-following capabilities to first output safe content, then exploits its narrative-shifting abilities to generate harmful content.
Our method can improve the attack success rate by 47% on the widely recognized secure model (Llama2) compared to existing approaches.
- Score: 34.221522224051846
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Jailbreak vulnerabilities in Large Language Models (LLMs) refer to methods that extract malicious content from the model by carefully crafting prompts or suffixes, which has garnered significant attention from the research community. However, traditional attack methods, which primarily focus on the semantic level, are easily detected by the model. These methods overlook the difference in the model's alignment protection capabilities at different output stages. To address this issue, we propose an adaptive position pre-fill jailbreak attack approach for executing jailbreak attacks on LLMs. Our method leverages the model's instruction-following capabilities to first output pre-filled safe content, then exploits its narrative-shifting abilities to generate harmful content. Extensive black-box experiments demonstrate our method can improve the attack success rate by 47% on the widely recognized secure model (Llama2) compared to existing approaches. Our code can be found at: https://github.com/Yummy416/AdaPPA.
Related papers
- xJailbreak: Representation Space Guided Reinforcement Learning for Interpretable LLM Jailbreaking [32.89084809038529]
Black-box jailbreak is an attack where crafted prompts bypass safety mechanisms in large language models.
We propose a novel black-box jailbreak method leveraging reinforcement learning (RL)
We introduce a comprehensive jailbreak evaluation framework incorporating keywords, intent matching, and answer validation to provide a more rigorous and holistic assessment of jailbreak success.
arXiv Detail & Related papers (2025-01-28T06:07:58Z) - Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense [55.77152277982117]
We introduce Layer-AdvPatcher, a methodology designed to defend against jailbreak attacks.
We use an unlearning strategy to patch specific layers within large language models through self-augmented datasets.
Our framework reduces the harmfulness and attack success rate of jailbreak attacks.
arXiv Detail & Related papers (2025-01-05T19:06:03Z) - DiffusionAttacker: Diffusion-Driven Prompt Manipulation for LLM Jailbreak [51.8218217407928]
Large Language Models (LLMs) are susceptible to generating harmful content when prompted with carefully crafted inputs.
This paper introduces DiffusionAttacker, an end-to-end generative approach for jailbreak rewriting inspired by diffusion models.
arXiv Detail & Related papers (2024-12-23T12:44:54Z) - A Realistic Threat Model for Large Language Model Jailbreaks [87.64278063236847]
In this work, we propose a unified threat model for the principled comparison of jailbreak attacks.
Our threat model combines constraints in perplexity, measuring how far a jailbreak deviates from natural text.
We adapt popular attacks to this new, realistic threat model, with which we, for the first time, benchmark these attacks on equal footing.
arXiv Detail & Related papers (2024-10-21T17:27:01Z) - Harnessing Task Overload for Scalable Jailbreak Attacks on Large Language Models [8.024771725860127]
Large Language Models (LLMs) remain vulnerable to jailbreak attacks that bypass their safety mechanisms.
We introduce a novel scalable jailbreak attack that preempts the activation of an LLM's safety policies by occupying its computational resources.
arXiv Detail & Related papers (2024-10-05T15:10:01Z) - Prefix Guidance: A Steering Wheel for Large Language Models to Defend Against Jailbreak Attacks [27.11523234556414]
We propose a plug-and-play and easy-to-deploy jailbreak defense framework, namely Prefix Guidance (PG)
PG guides the model to identify harmful prompts by directly setting the first few tokens of the model's output.
We demonstrate the effectiveness of PG across three models and five attack methods.
arXiv Detail & Related papers (2024-08-15T14:51:32Z) - Virtual Context: Enhancing Jailbreak Attacks with Special Token Injection [54.05862550647966]
This paper introduces Virtual Context, which leverages special tokens, previously overlooked in LLM security, to improve jailbreak attacks.
Comprehensive evaluations show that Virtual Context-assisted jailbreak attacks can improve the success rates of four widely used jailbreak methods by approximately 40%.
arXiv Detail & Related papers (2024-06-28T11:35:54Z) - Jailbreaking Large Language Models Through Alignment Vulnerabilities in Out-of-Distribution Settings [57.136748215262884]
We introduce ObscurePrompt for jailbreaking LLMs, inspired by the observed fragile alignments in Out-of-Distribution (OOD) data.
We first formulate the decision boundary in the jailbreaking process and then explore how obscure text affects LLM's ethical decision boundary.
Our approach substantially improves upon previous methods in terms of attack effectiveness, maintaining efficacy against two prevalent defense mechanisms.
arXiv Detail & Related papers (2024-06-19T16:09:58Z) - Weak-to-Strong Jailbreaking on Large Language Models [96.50953637783581]
Large language models (LLMs) are vulnerable to jailbreak attacks.
Existing jailbreaking methods are computationally costly.
We propose the weak-to-strong jailbreaking attack.
arXiv Detail & Related papers (2024-01-30T18:48:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.