Enhancing Q&A Text Retrieval with Ranking Models: Benchmarking, fine-tuning and deploying Rerankers for RAG
- URL: http://arxiv.org/abs/2409.07691v1
- Date: Thu, 12 Sep 2024 01:51:06 GMT
- Title: Enhancing Q&A Text Retrieval with Ranking Models: Benchmarking, fine-tuning and deploying Rerankers for RAG
- Authors: Gabriel de Souza P. Moreira, Ronay Ak, Benedikt Schifferer, Mengyao Xu, Radek Osmulski, Even Oldridge,
- Abstract summary: This paper benchmarks various publicly available ranking models and examines their impact on ranking accuracy.
We focus on text retrieval for question-answering tasks, a common use case for Retrieval-Augmented Generation systems.
We introduce a state-of-the-art ranking model, NV-RerankQA-Mistral-4B-v3, which achieves a significant accuracy increase of 14% compared to pipelines with other rerankers.
- Score: 1.8448587047759064
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Ranking models play a crucial role in enhancing overall accuracy of text retrieval systems. These multi-stage systems typically utilize either dense embedding models or sparse lexical indices to retrieve relevant passages based on a given query, followed by ranking models that refine the ordering of the candidate passages by its relevance to the query. This paper benchmarks various publicly available ranking models and examines their impact on ranking accuracy. We focus on text retrieval for question-answering tasks, a common use case for Retrieval-Augmented Generation systems. Our evaluation benchmarks include models some of which are commercially viable for industrial applications. We introduce a state-of-the-art ranking model, NV-RerankQA-Mistral-4B-v3, which achieves a significant accuracy increase of ~14% compared to pipelines with other rerankers. We also provide an ablation study comparing the fine-tuning of ranking models with different sizes, losses and self-attention mechanisms. Finally, we discuss challenges of text retrieval pipelines with ranking models in real-world industry applications, in particular the trade-offs among model size, ranking accuracy and system requirements like indexing and serving latency / throughput.
Related papers
- Optimizing Compound Retrieval Systems [30.21938278062652]
We propose the concept of compound retrieval systems as a broader class of retrieval systems that apply multiple prediction models.
We show how our compound approach can combine the classic BM25 retrieval model with state-of-the-art (pairwise) LLM relevance predictions.
Our experimental results show optimized compound retrieval systems provide better trade-offs between effectiveness and efficiency than cascading approaches.
arXiv Detail & Related papers (2025-04-16T13:18:16Z) - REAL-MM-RAG: A Real-World Multi-Modal Retrieval Benchmark [16.55516587540082]
We introduce REAL-MM-RAG, an automatically generated benchmark designed to address four key properties essential for real-world retrieval.
We propose a multi-difficulty-level scheme based on query rephrasing to evaluate models' semantic understanding beyond keyword matching.
Our benchmark reveals significant model weaknesses, particularly in handling table-heavy documents and robustness to query rephrasing.
arXiv Detail & Related papers (2025-02-17T22:10:47Z) - Scenario-Wise Rec: A Multi-Scenario Recommendation Benchmark [54.93461228053298]
We introduce our benchmark, textbfScenario-Wise Rec, which comprises 6 public datasets and 12 benchmark models, along with a training and evaluation pipeline.
We aim for this benchmark to offer researchers valuable insights from prior work, enabling the development of novel models.
arXiv Detail & Related papers (2024-12-23T08:15:34Z) - Ranked from Within: Ranking Large Multimodal Models for Visual Question Answering Without Labels [64.94853276821992]
Large multimodal models (LMMs) are increasingly deployed across diverse applications.
Traditional evaluation methods are largely dataset-centric, relying on fixed, labeled datasets and supervised metrics.
We explore unsupervised model ranking for LMMs by leveraging their uncertainty signals, such as softmax probabilities.
arXiv Detail & Related papers (2024-12-09T13:05:43Z) - Beyond the Numbers: Transparency in Relation Extraction Benchmark Creation and Leaderboards [5.632231145349045]
This paper investigates the transparency in the creation of benchmarks and the use of leaderboards for measuring progress in NLP.
Existing relation extraction benchmarks often suffer from insufficient documentation and lack crucial details.
While our discussion centers on the transparency of RE benchmarks and leaderboards, the observations we discuss are broadly applicable to other NLP tasks as well.
arXiv Detail & Related papers (2024-11-07T22:36:19Z) - JudgeRank: Leveraging Large Language Models for Reasoning-Intensive Reranking [81.88787401178378]
We introduce JudgeRank, a novel agentic reranker that emulates human cognitive processes when assessing document relevance.
We evaluate JudgeRank on the reasoning-intensive BRIGHT benchmark, demonstrating substantial performance improvements over first-stage retrieval methods.
In addition, JudgeRank performs on par with fine-tuned state-of-the-art rerankers on the popular BEIR benchmark, validating its zero-shot generalization capability.
arXiv Detail & Related papers (2024-10-31T18:43:12Z) - Quam: Adaptive Retrieval through Query Affinity Modelling [15.3583908068962]
Building relevance models to rank documents based on user information needs is a central task in information retrieval and the NLP community.
We propose a unifying view of the nascent area of adaptive retrieval by proposing, Quam.
Our proposed approach, Quam improves the recall performance by up to 26% over the standard re-ranking baselines.
arXiv Detail & Related papers (2024-10-26T22:52:12Z) - Generative Pre-trained Ranking Model with Over-parameterization at Web-Scale (Extended Abstract) [73.57710917145212]
Learning to rank is widely employed in web searches to prioritize pertinent webpages based on input queries.
We propose a emphulineGenerative ulineSemi-ulineSupervised ulinePre-trained (GS2P) model to address these challenges.
We conduct extensive offline experiments on both a publicly available dataset and a real-world dataset collected from a large-scale search engine.
arXiv Detail & Related papers (2024-09-25T03:39:14Z) - List-aware Reranking-Truncation Joint Model for Search and
Retrieval-augmented Generation [80.12531449946655]
We propose a Reranking-Truncation joint model (GenRT) that can perform the two tasks concurrently.
GenRT integrates reranking and truncation via generative paradigm based on encoder-decoder architecture.
Our method achieves SOTA performance on both reranking and truncation tasks for web search and retrieval-augmented LLMs.
arXiv Detail & Related papers (2024-02-05T06:52:53Z) - NoRefER: a Referenceless Quality Metric for Automatic Speech Recognition
via Semi-Supervised Language Model Fine-Tuning with Contrastive Learning [0.20999222360659603]
NoRefER is a novel referenceless quality metric for automatic speech recognition (ASR) systems.
NoRefER exploits the known quality relationships between hypotheses from multiple compression levels of an ASR for learning to rank intra-sample hypotheses by quality.
The results indicate that NoRefER correlates highly with reference-based metrics and their intra-sample ranks, indicating a high potential for referenceless ASR evaluation or a/b testing.
arXiv Detail & Related papers (2023-06-21T21:26:19Z) - Incorporating Relevance Feedback for Information-Seeking Retrieval using
Few-Shot Document Re-Ranking [56.80065604034095]
We introduce a kNN approach that re-ranks documents based on their similarity with the query and the documents the user considers relevant.
To evaluate our different integration strategies, we transform four existing information retrieval datasets into the relevance feedback scenario.
arXiv Detail & Related papers (2022-10-19T16:19:37Z) - Challenges in Procedural Multimodal Machine Comprehension:A Novel Way To
Benchmark [14.50261153230204]
We focus on Multimodal Machine Reading (M3C) where a model is expected to answer questions based on given passage (or context)
We identify three critical biases stemming from the question-answer generation process and memorization capabilities of large deep models.
We propose a systematic framework to address these biases through three Control-Knobs.
arXiv Detail & Related papers (2021-10-22T16:33:57Z) - Modeling Relevance Ranking under the Pre-training and Fine-tuning
Paradigm [44.96049217770624]
We propose a novel ranking framework called Pre-Rank that takes both user's view and system's view into consideration.
To model the user's view of relevance, Pre-Rank pre-trains the initial query-document representations based on large-scale user activities data.
To model the system's view of relevance, Pre-Rank further fine-tunes the model on expert-labeled relevance data.
arXiv Detail & Related papers (2021-08-12T10:37:12Z) - Interpretable Learning-to-Rank with Generalized Additive Models [78.42800966500374]
Interpretability of learning-to-rank models is a crucial yet relatively under-examined research area.
Recent progress on interpretable ranking models largely focuses on generating post-hoc explanations for existing black-box ranking models.
We lay the groundwork for intrinsically interpretable learning-to-rank by introducing generalized additive models (GAMs) into ranking tasks.
arXiv Detail & Related papers (2020-05-06T01:51:30Z) - Document Ranking with a Pretrained Sequence-to-Sequence Model [56.44269917346376]
We show how a sequence-to-sequence model can be trained to generate relevance labels as "target words"
Our approach significantly outperforms an encoder-only model in a data-poor regime.
arXiv Detail & Related papers (2020-03-14T22:29:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.