FedHide: Federated Learning by Hiding in the Neighbors
- URL: http://arxiv.org/abs/2409.07808v1
- Date: Thu, 12 Sep 2024 07:37:49 GMT
- Title: FedHide: Federated Learning by Hiding in the Neighbors
- Authors: Hyunsin Park, Sungrack Yun,
- Abstract summary: We propose a prototype-based federated learning method designed for embedding networks in classification or verification tasks.
Our approach generates proxy class prototypes by linearly combining them with their nearest neighbors.
This technique conceals the true class prototype while enabling clients to learn discriminative embedding networks.
- Score: 12.71494268219787
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a prototype-based federated learning method designed for embedding networks in classification or verification tasks. Our focus is on scenarios where each client has data from a single class. The main challenge is to develop an embedding network that can distinguish between different classes while adhering to privacy constraints. Sharing true class prototypes with the server or other clients could potentially compromise sensitive information. To tackle this issue, we propose a proxy class prototype that will be shared among clients instead of the true class prototype. Our approach generates proxy class prototypes by linearly combining them with their nearest neighbors. This technique conceals the true class prototype while enabling clients to learn discriminative embedding networks. We compare our method to alternative techniques, such as adding random Gaussian noise and using random selection with cosine similarity constraints. Furthermore, we evaluate the robustness of our approach against gradient inversion attacks and introduce a measure for prototype leakage. This measure quantifies the extent of private information revealed when sharing the proposed proxy class prototype. Moreover, we provide a theoretical analysis of the convergence properties of our approach. Our proposed method for federated learning from scratch demonstrates its effectiveness through empirical results on three benchmark datasets: CIFAR-100, VoxCeleb1, and VGGFace2.
Related papers
- Federated Face Forgery Detection Learning with Personalized Representation [63.90408023506508]
Deep generator technology can produce high-quality fake videos that are indistinguishable, posing a serious social threat.
Traditional forgery detection methods directly centralized training on data.
The paper proposes a novel federated face forgery detection learning with personalized representation.
arXiv Detail & Related papers (2024-06-17T02:20:30Z) - Beyond Known Clusters: Probe New Prototypes for Efficient Generalized Class Discovery [23.359450657842686]
Generalized Class Discovery (GCD) aims to dynamically assign labels to unlabelled data partially based on knowledge learned from labelled data.
We propose an adaptive probing mechanism that introduces learnable potential prototypes to expand cluster prototypes.
Our method surpasses the nearest competitor by a significant margin of 9.7% within the Stanford Cars dataset.
arXiv Detail & Related papers (2024-04-13T12:41:40Z) - Rethinking Person Re-identification from a Projection-on-Prototypes
Perspective [84.24742313520811]
Person Re-IDentification (Re-ID) as a retrieval task, has achieved tremendous development over the past decade.
We propose a new baseline ProNet, which innovatively reserves the function of the classifier at the inference stage.
Experiments on four benchmarks demonstrate that our proposed ProNet is simple yet effective, and significantly beats previous baselines.
arXiv Detail & Related papers (2023-08-21T13:38:10Z) - Prototype Helps Federated Learning: Towards Faster Convergence [38.517903009319994]
Federated learning (FL) is a distributed machine learning technique in which multiple clients cooperate to train a shared model without exchanging their raw data.
In this paper, a prototype-based federated learning framework is proposed, which can achieve better inference performance with only a few changes to the last global iteration of the typical federated learning process.
arXiv Detail & Related papers (2023-03-22T04:06:29Z) - Client-specific Property Inference against Secure Aggregation in
Federated Learning [52.8564467292226]
Federated learning has become a widely used paradigm for collaboratively training a common model among different participants.
Many attacks have shown that it is still possible to infer sensitive information such as membership, property, or outright reconstruction of participant data.
We show that simple linear models can effectively capture client-specific properties only from the aggregated model updates.
arXiv Detail & Related papers (2023-03-07T14:11:01Z) - Learning Classifiers of Prototypes and Reciprocal Points for Universal
Domain Adaptation [79.62038105814658]
Universal Domain aims to transfer the knowledge between datasets by handling two shifts: domain-shift and categoryshift.
Main challenge is correctly distinguishing the unknown target samples while adapting the distribution of known class knowledge from source to target.
Most existing methods approach this problem by first training the target adapted known and then relying on the single threshold to distinguish unknown target samples.
arXiv Detail & Related papers (2022-12-16T09:01:57Z) - Prototype-Based Layered Federated Cross-Modal Hashing [14.844848099134648]
In this paper, we propose a novel method called prototype-based layered federated cross-modal hashing.
Specifically, the prototype is introduced to learn the similarity between instances and classes on server.
To realize personalized federated learning, a hypernetwork is deployed on server to dynamically update different layers' weights of local model.
arXiv Detail & Related papers (2022-10-27T15:11:12Z) - Dual Prototypical Contrastive Learning for Few-shot Semantic
Segmentation [55.339405417090084]
We propose a dual prototypical contrastive learning approach tailored to the few-shot semantic segmentation (FSS) task.
The main idea is to encourage the prototypes more discriminative by increasing inter-class distance while reducing intra-class distance in prototype feature space.
We demonstrate that the proposed dual contrastive learning approach outperforms state-of-the-art FSS methods on PASCAL-5i and COCO-20i datasets.
arXiv Detail & Related papers (2021-11-09T08:14:50Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
Machine learning algorithms are susceptible to data poisoning attacks.
We present a unifying view of randomized smoothing over arbitrary functions.
We propose a new strategy for building classifiers that are pointwise-certifiably robust to general data poisoning attacks.
arXiv Detail & Related papers (2020-02-07T21:28:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.