TSELM: Target Speaker Extraction using Discrete Tokens and Language Models
- URL: http://arxiv.org/abs/2409.07841v3
- Date: Tue, 17 Sep 2024 01:41:32 GMT
- Title: TSELM: Target Speaker Extraction using Discrete Tokens and Language Models
- Authors: Beilong Tang, Bang Zeng, Ming Li,
- Abstract summary: TSELM is a novel target speaker extraction network that leverages discrete tokens and language models.
We show that TSELM achieves excellent results in speech quality and comparable results in speech intelligibility.
- Score: 5.187669487527287
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose TSELM, a novel target speaker extraction network that leverages discrete tokens and language models. TSELM utilizes multiple discretized layers from WavLM as input tokens and incorporates cross-attention mechanisms to integrate target speaker information. Language models are employed to capture the sequence dependencies, while a scalable HiFi-GAN is used to reconstruct the audio from the tokens. By applying a cross-entropy loss, TSELM models the probability distribution of output tokens, thus converting the complex regression problem of audio generation into a classification task. Experimental results show that TSELM achieves excellent results in speech quality and comparable results in speech intelligibility.
Related papers
- DC-Spin: A Speaker-invariant Speech Tokenizer for Spoken Language Models [45.791472119671916]
Spoken language models (SLMs) process text and speech, enabling simultaneous speech understanding and generation.
DC-Spin aims to improve speech tokenization by bridging audio signals and SLM tokens.
We propose a chunk-wise approach to enable streamable DC-Spin without retraining and degradation.
arXiv Detail & Related papers (2024-10-31T17:43:13Z) - SyllableLM: Learning Coarse Semantic Units for Speech Language Models [21.762112843104028]
We introduce a controllable self-supervised technique to merge speech representations into coarser syllable-like units.
Our method produces controllable-rate semantic units at as low as 5Hz and 60bps and SotA inc segmentation and clustering.
SyllableLM achieves significant improvements in efficiency with a 30x reduction in training compute and a 4x wall-clock inference speedup.
arXiv Detail & Related papers (2024-10-05T04:29:55Z) - CosyVoice: A Scalable Multilingual Zero-shot Text-to-speech Synthesizer based on Supervised Semantic Tokens [49.569695524535454]
We propose to represent speech with supervised semantic tokens, which are derived from a multilingual speech recognition model by inserting vector quantization into the encoder.
Based on the tokens, we further propose a scalable zero-shot TTS synthesizer, CosyVoice, which consists of an LLM for text-to-token generation and a conditional flow matching model for token-to-speech synthesis.
arXiv Detail & Related papers (2024-07-07T15:16:19Z) - How Should We Extract Discrete Audio Tokens from Self-Supervised Models? [15.03039528965825]
This paper explores the optimal configuration of semantic tokens across discriminative and generative tasks.
We propose a scalable solution to train a universal vocoder across multiple SSL layers.
arXiv Detail & Related papers (2024-06-15T20:43:07Z) - TokenSplit: Using Discrete Speech Representations for Direct, Refined,
and Transcript-Conditioned Speech Separation and Recognition [51.565319173790314]
TokenSplit is a sequence-to-sequence encoder-decoder model that uses the Transformer architecture.
We show that our model achieves excellent performance in terms of separation, both with or without transcript conditioning.
We also measure the automatic speech recognition (ASR) performance and provide audio samples of speech synthesis to demonstrate the additional utility of our model.
arXiv Detail & Related papers (2023-08-21T01:52:01Z) - GanLM: Encoder-Decoder Pre-training with an Auxiliary Discriminator [114.8954615026781]
We propose a GAN-style model for encoder-decoder pre-training by introducing an auxiliary discriminator.
GanLM is trained with two pre-training objectives: replaced token detection and replaced token denoising.
Experiments in language generation benchmarks show that GanLM with the powerful language understanding capability outperforms various strong pre-trained language models.
arXiv Detail & Related papers (2022-12-20T12:51:11Z) - Speaker Embedding-aware Neural Diarization: a Novel Framework for
Overlapped Speech Diarization in the Meeting Scenario [51.5031673695118]
We reformulate overlapped speech diarization as a single-label prediction problem.
We propose the speaker embedding-aware neural diarization (SEND) system.
arXiv Detail & Related papers (2022-03-18T06:40:39Z) - Single-channel speech separation using Soft-minimum Permutation
Invariant Training [60.99112031408449]
A long-lasting problem in supervised speech separation is finding the correct label for each separated speech signal.
Permutation Invariant Training (PIT) has been shown to be a promising solution in handling the label ambiguity problem.
In this work, we propose a probabilistic optimization framework to address the inefficiency of PIT in finding the best output-label assignment.
arXiv Detail & Related papers (2021-11-16T17:25:05Z) - Any-to-Many Voice Conversion with Location-Relative Sequence-to-Sequence
Modeling [61.351967629600594]
This paper proposes an any-to-many location-relative, sequence-to-sequence (seq2seq), non-parallel voice conversion approach.
In this approach, we combine a bottle-neck feature extractor (BNE) with a seq2seq synthesis module.
Objective and subjective evaluations show that the proposed any-to-many approach has superior voice conversion performance in terms of both naturalness and speaker similarity.
arXiv Detail & Related papers (2020-09-06T13:01:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.