Collaboration Encouraging Quantum Secret Sharing Scheme with Seal Property
- URL: http://arxiv.org/abs/2409.07863v1
- Date: Thu, 12 Sep 2024 09:17:21 GMT
- Title: Collaboration Encouraging Quantum Secret Sharing Scheme with Seal Property
- Authors: Xiaogang Cheng, Ren Guo,
- Abstract summary: A new concept of quantum secret sharing is introduced, in which collaboration among participants are encourage.
The first one is unconditional secure and achieve the optimal bound of a seal scheme.
The second one improve the optimal bound of seal by introducing post-quantum secure computational assumption.
- Score: 0.069060054915724
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A new concept of quantum secret sharing is introduced, in which collaboration among participants are encourage. And the dealer can ask the participants to send back their share and revoke the secret before a predefined date or event, i.e. so-called seal property. We also give two concrete constructions of CE-QSS-Seal (Collaboration-Encouraging Quantum Secret Sharing with Seal property) scheme. The first one is unconditional secure and achieve the optimal bound of a seal scheme. The second one improve the optimal bound of seal by introducing post-quantum secure computational assumption.
Related papers
- Advance Sharing Procedures for the Ramp Quantum Secret Sharing Schemes With the Highest Coding Rate [0.5439020425818999]
We propose methods to distribute some shares before a secret is given in ramp quantum secret sharing schemes.
We prove that our new encoding procedures retain the correspondences between quantum secrets and quantum shares in the original schemes.
arXiv Detail & Related papers (2024-07-30T08:54:44Z) - The Road to Near-Capacity CV-QKD Reconciliation: An FEC-Agnostic Design [53.67135680812675]
A new codeword-based QKD reconciliation scheme is proposed.
Both the authenticated classical channel (ClC) and the quantum channel (QuC) are protected by separate forward error correction (FEC) coding schemes.
The proposed system makes QKD reconciliation compatible with a wide range of FEC schemes.
arXiv Detail & Related papers (2024-03-24T14:47:08Z) - Quantum Secret Sharing Enhanced: Utilizing W States for Anonymous and
Secure Communication [11.077883755438053]
Quantum secret sharing (QSS) is the result of merging the principles of quantum mechanics with secret information sharing.
We propose a QASS protocol via W states, which can share secrets while ensuring recover-ability, recover-security, and recover-anonymity.
Our investigations reveal that W states exhibit good performance in mitigating noise interference, making them apt for practical applications.
arXiv Detail & Related papers (2024-02-04T09:15:02Z) - Quantum Secret Reconstruction [2.8233507229238177]
This paper proposes the first quantum secret reconstruction protocol based on cluster states.
It is shown that the proposed protocol is secure against several common attacks.
arXiv Detail & Related papers (2023-06-15T05:24:29Z) - ByzSecAgg: A Byzantine-Resistant Secure Aggregation Scheme for Federated
Learning Based on Coded Computing and Vector Commitment [90.60126724503662]
ByzSecAgg is an efficient secure aggregation scheme for federated learning.
ByzSecAgg is protected against Byzantine attacks and privacy leakages.
arXiv Detail & Related papers (2023-02-20T11:15:18Z) - Semiquantum secret sharing by using x-type states [4.397981844057195]
A semiquantum secret sharing protocol based on x-type states is proposed.
It can accomplish the goal that only when two classical communicants cooperate together can they extract the shared secret key of a quantum communicant.
Detailed security analysis turns out that this protocol is completely robust against an eavesdropper.
arXiv Detail & Related papers (2022-08-03T08:58:45Z) - Conference key agreement in a quantum network [67.410870290301]
Quantum conference key agreement (QCKA) allows multiple users to establish a secure key from a shared multi-partite entangled state.
In a quantum network, this protocol can be efficiently implemented using a single copy of a N-qubit Greenberger-Horne-Zeilinger (GHZ) state to distil a secure N-user conference key bit.
arXiv Detail & Related papers (2022-07-04T18:00:07Z) - Unified Approach to Secret Sharing and Symmetric Private Information
Retrieval with Colluding Servers in Quantum Systems [71.78056556634196]
This paper unifiedly addresses two kinds of key quantum secure tasks, i.e., quantum versions of secret sharing (SS) and symmetric private information retrieval (SPIR)
In particular, two kinds of quantum extensions of SS are known; One is the classical-quantum (CQ) setting, in which the secret to be sent is classical information and the shares are quantum systems.
We newly introduce the third setting, i.e., the entanglement-assisted (EA) setting, which is defined by modifying the CQ setting with allowing prior entanglement between the dealer and the end-user who recovers the secret by
arXiv Detail & Related papers (2022-05-29T10:28:04Z) - Quantum Proofs of Deletion for Learning with Errors [91.3755431537592]
We construct the first fully homomorphic encryption scheme with certified deletion.
Our main technical ingredient is an interactive protocol by which a quantum prover can convince a classical verifier that a sample from the Learning with Errors distribution in the form of a quantum state was deleted.
arXiv Detail & Related papers (2022-03-03T10:07:32Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
We consider the setting where the two parties (a classical Alice and a quantum Bob) can communicate only via a classical channel.
We show that it is in general impossible to realize a two-party quantum functionality with black-box simulation in the case of malicious quantum adversaries.
We provide a compiler that takes as input a classical proof of quantum knowledge (PoQK) protocol for a QMA relation R and outputs a zero-knowledge PoQK for R that can be verified by classical parties.
arXiv Detail & Related papers (2020-10-15T17:55:31Z) - A Hybrid Quantum Secret Sharing Scheme based on Mutually Unbiased Bases [6.42717893572633]
We propose a hybrid quantum secret sharing scheme based on mutually unbiased bases and monotone span program.
The correctness and security of the scheme are proved and our scheme is secure against the general eavesdropper attacks.
arXiv Detail & Related papers (2020-06-23T06:59:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.