SoVAR: Building Generalizable Scenarios from Accident Reports for Autonomous Driving Testing
- URL: http://arxiv.org/abs/2409.08081v1
- Date: Thu, 12 Sep 2024 14:35:55 GMT
- Title: SoVAR: Building Generalizable Scenarios from Accident Reports for Autonomous Driving Testing
- Authors: An Guo, Yuan Zhou, Haoxiang Tian, Chunrong Fang, Yunjian Sun, Weisong Sun, Xinyu Gao, Anh Tuan Luu, Yang Liu, Zhenyu Chen,
- Abstract summary: Accident reports provide valuable resources for autonomous driving system (ADS) testing.
Existing scenario reconstruction methods from accident reports often exhibit limited accuracy in information extraction.
In this paper, we design and implement Sovar, a tool for automatically generating road-generalizable scenarios from accident reports.
- Score: 35.33278666285077
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous driving systems (ADSs) have undergone remarkable development and are increasingly employed in safety-critical applications. However, recently reported data on fatal accidents involving ADSs suggests that the desired level of safety has not yet been fully achieved. Consequently, there is a growing need for more comprehensive and targeted testing approaches to ensure safe driving. Scenarios from real-world accident reports provide valuable resources for ADS testing, including critical scenarios and high-quality seeds. However, existing scenario reconstruction methods from accident reports often exhibit limited accuracy in information extraction. Moreover, due to the diversity and complexity of road environments, matching current accident information with the simulation map data for reconstruction poses significant challenges. In this paper, we design and implement SoVAR, a tool for automatically generating road-generalizable scenarios from accident reports. SoVAR utilizes well-designed prompts with linguistic patterns to guide the large language model in extracting accident information from textual data. Subsequently, it formulates and solves accident-related constraints in conjunction with the extracted accident information to generate accident trajectories. Finally, SoVAR reconstructs accident scenarios on various map structures and converts them into test scenarios to evaluate its capability to detect defects in industrial ADSs. We experiment with SoVAR, using accident reports from the National Highway Traffic Safety Administration's database to generate test scenarios for the industrial-grade ADS Apollo. The experimental findings demonstrate that SoVAR can effectively generate generalized accident scenarios across different road structures. Furthermore, the results confirm that SoVAR identified 5 distinct safety violation types that contributed to the crash of Baidu Apollo.
Related papers
- AVD2: Accident Video Diffusion for Accident Video Description [11.221276595088215]
We introduce AVD2 (Accident Video Diffusion for Accident Video Description), a novel framework that enhances accident scene understanding.
The framework generates accident videos that align with detailed natural language descriptions and reasoning.
The integration of the EMM-AU dataset establishes state-of-the-art performance across both automated metrics and human evaluations.
arXiv Detail & Related papers (2025-02-20T18:22:44Z) - From Accidents to Insights: Leveraging Multimodal Data for Scenario-Driven ADS Testing [3.984220091774453]
This paper introduces TRACE, a scenario-based ADS Test case Generation framework for Critical Scenarios.
By leveraging multimodal data to extract challenging scenarios from real-world car crash reports, TRACE constructs numerous critical test cases with less data.
User feedback reveals that TRACE demonstrates superior scenario reconstruction accuracy, with 77.5% of the scenarios being rated as'mostly or 'totally' consistent.
arXiv Detail & Related papers (2025-02-04T05:21:29Z) - An Explainable Machine Learning Approach to Traffic Accident Fatality Prediction [0.02730969268472861]
Road traffic accidents pose a significant public health threat worldwide.
This study presents a machine learning-based approach for classifying fatal and non-fatal road accident outcomes.
arXiv Detail & Related papers (2024-09-18T12:41:56Z) - LMM-enhanced Safety-Critical Scenario Generation for Autonomous Driving System Testing From Non-Accident Traffic Videos [22.638869562921133]
It is paramount to generate a diverse range of safety-critical test scenarios for autonomous driving systems.
Some accident-free real-world scenarios can not only lead to misbehaviors in ADSs but also be leveraged for the generation of ADS violations.
It is of significant importance to discover safety violations of ADSs from routine traffic scenarios.
arXiv Detail & Related papers (2024-06-16T09:05:56Z) - Learning Traffic Crashes as Language: Datasets, Benchmarks, and What-if Causal Analyses [76.59021017301127]
We propose a large-scale traffic crash language dataset, named CrashEvent, summarizing 19,340 real-world crash reports.
We further formulate the crash event feature learning as a novel text reasoning problem and further fine-tune various large language models (LLMs) to predict detailed accident outcomes.
Our experiments results show that our LLM-based approach not only predicts the severity of accidents but also classifies different types of accidents and predicts injury outcomes.
arXiv Detail & Related papers (2024-06-16T03:10:16Z) - ACAV: A Framework for Automatic Causality Analysis in Autonomous Vehicle
Accident Recordings [5.578446693797519]
Recent fatalities have emphasized the importance of safety validation through large-scale testing.
We propose ACAV, an automated framework designed to conduct causality analysis for AV accident recordings.
We evaluate ACAV on the Apollo ADS, finding that it can identify five distinct types of causal events in 93.64% of 110 accident recordings.
arXiv Detail & Related papers (2024-01-13T12:41:05Z) - A Counterfactual Safety Margin Perspective on the Scoring of Autonomous
Vehicles' Riskiness [52.27309191283943]
This paper presents a data-driven framework for assessing the risk of different AVs' behaviors.
We propose the notion of counterfactual safety margin, which represents the minimum deviation from nominal behavior that could cause a collision.
arXiv Detail & Related papers (2023-08-02T09:48:08Z) - DeepAccident: A Motion and Accident Prediction Benchmark for V2X
Autonomous Driving [76.29141888408265]
We propose a large-scale dataset containing diverse accident scenarios that frequently occur in real-world driving.
The proposed DeepAccident dataset includes 57K annotated frames and 285K annotated samples, approximately 7 times more than the large-scale nuScenes dataset.
arXiv Detail & Related papers (2023-04-03T17:37:00Z) - Cognitive Accident Prediction in Driving Scenes: A Multimodality
Benchmark [77.54411007883962]
We propose a Cognitive Accident Prediction (CAP) method that explicitly leverages human-inspired cognition of text description on the visual observation and the driver attention to facilitate model training.
CAP is formulated by an attentive text-to-vision shift fusion module, an attentive scene context transfer module, and the driver attention guided accident prediction module.
We construct a new large-scale benchmark consisting of 11,727 in-the-wild accident videos with over 2.19 million frames.
arXiv Detail & Related papers (2022-12-19T11:43:02Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
We propose efficient mechanisms to characterize and generate testing scenarios using a state-of-the-art driving simulator.
We use our method to characterize real driving data from the Next Generation Simulation (NGSIM) project.
We rank the scenarios by defining metrics based on the complexity of avoiding accidents and provide insights into how the AV could have minimized the probability of incurring an accident.
arXiv Detail & Related papers (2021-03-12T17:00:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.