TextBoost: Towards One-Shot Personalization of Text-to-Image Models via Fine-tuning Text Encoder
- URL: http://arxiv.org/abs/2409.08248v1
- Date: Thu, 12 Sep 2024 17:47:51 GMT
- Title: TextBoost: Towards One-Shot Personalization of Text-to-Image Models via Fine-tuning Text Encoder
- Authors: NaHyeon Park, Kunhee Kim, Hyunjung Shim,
- Abstract summary: This paper addresses the challenge of one-shot personalization by mitigating overfitting, enabling the creation of controllable images through text prompts.
We introduce three key techniques to enhance personalization performance: (1) augmentation tokens to encourage feature disentanglement and alleviate overfitting, (2) a knowledge-preservation loss to reduce language drift and promote generalizability across diverse prompts, and (3) SNR-weighted sampling for efficient training.
- Score: 13.695128139074285
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent breakthroughs in text-to-image models have opened up promising research avenues in personalized image generation, enabling users to create diverse images of a specific subject using natural language prompts. However, existing methods often suffer from performance degradation when given only a single reference image. They tend to overfit the input, producing highly similar outputs regardless of the text prompt. This paper addresses the challenge of one-shot personalization by mitigating overfitting, enabling the creation of controllable images through text prompts. Specifically, we propose a selective fine-tuning strategy that focuses on the text encoder. Furthermore, we introduce three key techniques to enhance personalization performance: (1) augmentation tokens to encourage feature disentanglement and alleviate overfitting, (2) a knowledge-preservation loss to reduce language drift and promote generalizability across diverse prompts, and (3) SNR-weighted sampling for efficient training. Extensive experiments demonstrate that our approach efficiently generates high-quality, diverse images using only a single reference image while significantly reducing memory and storage requirements.
Related papers
- Layout Agnostic Scene Text Image Synthesis with Diffusion Models [42.37340959594495]
SceneTextGen is a novel diffusion-based model specifically designed to circumvent the need for a predefined layout stage.
The novelty of SceneTextGen lies in its integration of three key components: a character-level encoder for capturing detailed typographic properties and a character-level instance segmentation model and a word-level spotting model to address the issues of unwanted text generation and minor character inaccuracies.
arXiv Detail & Related papers (2024-06-03T07:20:34Z) - Tuning-Free Image Customization with Image and Text Guidance [65.9504243633169]
We introduce a tuning-free framework for simultaneous text-image-guided image customization.
Our approach preserves the semantic features of the reference image subject while allowing modification of detailed attributes based on text descriptions.
Our approach outperforms previous methods in both human and quantitative evaluations.
arXiv Detail & Related papers (2024-03-19T11:48:35Z) - Contrastive Prompts Improve Disentanglement in Text-to-Image Diffusion
Models [68.47333676663312]
We show a simple modification of classifier-free guidance can help disentangle image factors in text-to-image models.
The key idea of our method, Contrastive Guidance, is to characterize an intended factor with two prompts that differ in minimal tokens.
We illustrate whose benefits in three scenarios: (1) to guide domain-specific diffusion models trained on an object class, (2) to gain continuous, rig-like controls for text-to-image generation, and (3) to improve the performance of zero-shot image editors.
arXiv Detail & Related papers (2024-02-21T03:01:17Z) - Prompt Expansion for Adaptive Text-to-Image Generation [51.67811570987088]
This paper proposes a Prompt Expansion framework that helps users generate high-quality, diverse images with less effort.
The Prompt Expansion model takes a text query as input and outputs a set of expanded text prompts.
We conduct a human evaluation study that shows that images generated through Prompt Expansion are more aesthetically pleasing and diverse than those generated by baseline methods.
arXiv Detail & Related papers (2023-12-27T21:12:21Z) - Text-guided Image Restoration and Semantic Enhancement for Text-to-Image Person Retrieval [11.798006331912056]
The goal of Text-to-Image Person Retrieval (TIPR) is to retrieve specific person images according to the given textual descriptions.
We propose a novel TIPR framework to build fine-grained interactions and alignment between person images and the corresponding texts.
arXiv Detail & Related papers (2023-07-18T08:23:46Z) - ConES: Concept Embedding Search for Parameter Efficient Tuning Large
Vision Language Models [21.15548013842187]
We propose a Concept Embedding Search (ConES) approach by optimizing prompt embeddings.
By dropping the text encoder, we are able to significantly speed up the learning process.
Our approach can beat the prompt tuning and textual inversion methods in a variety of downstream tasks.
arXiv Detail & Related papers (2023-05-30T12:45:49Z) - Unified Multi-Modal Latent Diffusion for Joint Subject and Text
Conditional Image Generation [63.061871048769596]
We present a novel Unified Multi-Modal Latent Diffusion (UMM-Diffusion) which takes joint texts and images containing specified subjects as input sequences.
To be more specific, both input texts and images are encoded into one unified multi-modal latent space.
Our method is able to generate high-quality images with complex semantics from both aspects of input texts and images.
arXiv Detail & Related papers (2023-03-16T13:50:20Z) - Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors [58.71128866226768]
Recent text-to-image generation methods have incrementally improved the generated image fidelity and text relevancy.
We propose a novel text-to-image method that addresses these gaps by (i) enabling a simple control mechanism complementary to text in the form of a scene.
Our model achieves state-of-the-art FID and human evaluation results, unlocking the ability to generate high fidelity images in a resolution of 512x512 pixels.
arXiv Detail & Related papers (2022-03-24T15:44:50Z) - DF-GAN: A Simple and Effective Baseline for Text-to-Image Synthesis [80.54273334640285]
We propose a novel one-stage text-to-image backbone that directly synthesizes high-resolution images without entanglements between different generators.
We also propose a novel Target-Aware Discriminator composed of Matching-Aware Gradient Penalty and One-Way Output.
Compared with current state-of-the-art methods, our proposed DF-GAN is simpler but more efficient to synthesize realistic and text-matching images.
arXiv Detail & Related papers (2020-08-13T12:51:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.