AnySkin: Plug-and-play Skin Sensing for Robotic Touch
- URL: http://arxiv.org/abs/2409.08276v3
- Date: Fri, 27 Sep 2024 16:09:13 GMT
- Title: AnySkin: Plug-and-play Skin Sensing for Robotic Touch
- Authors: Raunaq Bhirangi, Venkatesh Pattabiraman, Enes Erciyes, Yifeng Cao, Tess Hellebrekers, Lerrel Pinto,
- Abstract summary: We address the challenges that impede the use of tactile sensing -- versatility, replaceability, and data reusability.
This work makes three key contributions: first, we introduce a streamlined fabrication process for creating an adhesive-free, durable and easily replaceable magnetic tactile sensor; second, we characterize slip detection and policy learning with the AnySkin sensor; and third, we demonstrate zero-shot generalization of models trained on one instance of AnySkin to new instances.
- Score: 15.126846563910814
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While tactile sensing is widely accepted as an important and useful sensing modality, its use pales in comparison to other sensory modalities like vision and proprioception. AnySkin addresses the critical challenges that impede the use of tactile sensing -- versatility, replaceability, and data reusability. Building on the simplistic design of ReSkin, and decoupling the sensing electronics from the sensing interface, AnySkin simplifies integration making it as straightforward as putting on a phone case and connecting a charger. Furthermore, AnySkin is the first uncalibrated tactile-sensor with cross-instance generalizability of learned manipulation policies. To summarize, this work makes three key contributions: first, we introduce a streamlined fabrication process and a design tool for creating an adhesive-free, durable and easily replaceable magnetic tactile sensor; second, we characterize slip detection and policy learning with the AnySkin sensor; and third, we demonstrate zero-shot generalization of models trained on one instance of AnySkin to new instances, and compare it with popular existing tactile solutions like DIGIT and ReSkin. Videos of experiments, fabrication details and design files can be found on https://any-skin.github.io/
Related papers
- Learning In-Hand Translation Using Tactile Skin With Shear and Normal Force Sensing [43.269672740168396]
We introduce a sensor model for tactile skin that enables zero-shot sim-to-real transfer of ternary shear and binary normal forces.
We conduct extensive real-world experiments to assess how tactile sensing facilitates policy adaptation to various unseen object properties.
arXiv Detail & Related papers (2024-07-10T17:52:30Z) - A model-free approach to fingertip slip and disturbance detection for
grasp stability inference [0.0]
We propose a method for assessing grasp stability using tactile sensing.
We use highly sensitive Uskin tactile sensors mounted on an Allegro hand to test and validate our method.
arXiv Detail & Related papers (2023-11-22T09:04:26Z) - Tactile-Filter: Interactive Tactile Perception for Part Mating [54.46221808805662]
Humans rely on touch and tactile sensing for a lot of dexterous manipulation tasks.
vision-based tactile sensors are being widely used for various robotic perception and control tasks.
We present a method for interactive perception using vision-based tactile sensors for a part mating task.
arXiv Detail & Related papers (2023-03-10T16:27:37Z) - Bayesian Imitation Learning for End-to-End Mobile Manipulation [80.47771322489422]
Augmenting policies with additional sensor inputs, such as RGB + depth cameras, is a straightforward approach to improving robot perception capabilities.
We show that using the Variational Information Bottleneck to regularize convolutional neural networks improves generalization to held-out domains.
We demonstrate that our method is able to help close the sim-to-real gap and successfully fuse RGB and depth modalities.
arXiv Detail & Related papers (2022-02-15T17:38:30Z) - ReSkin: versatile, replaceable, lasting tactile skins [28.348982687106883]
ReSkin is a tactile soft sensor that leverages machine learning and magnetic sensing to offer a low-cost, diverse and compact solution for long-term use.
Our self-supervised learning algorithm enables finer performance enhancement with small, inexpensive data collection procedures.
arXiv Detail & Related papers (2021-10-29T20:21:37Z) - Elastic Tactile Simulation Towards Tactile-Visual Perception [58.44106915440858]
We propose Elastic Interaction of Particles (EIP) for tactile simulation.
EIP models the tactile sensor as a group of coordinated particles, and the elastic property is applied to regulate the deformation of particles during contact.
We further propose a tactile-visual perception network that enables information fusion between tactile data and visual images.
arXiv Detail & Related papers (2021-08-11T03:49:59Z) - PyTouch: A Machine Learning Library for Touch Processing [68.32055581488557]
We present PyTouch, the first machine learning library dedicated to the processing of touch sensing signals.
PyTouch is designed to be modular, easy-to-use and provides state-of-the-art touch processing capabilities as a service.
We evaluate PyTouch on real-world data from several tactile sensors on touch processing tasks such as touch detection, slip and object pose estimations.
arXiv Detail & Related papers (2021-05-26T18:55:18Z) - SensiX: A Platform for Collaborative Machine Learning on the Edge [69.1412199244903]
We present SensiX, a personal edge platform that stays between sensor data and sensing models.
We demonstrate its efficacy in developing motion and audio-based multi-device sensing systems.
Our evaluation shows that SensiX offers a 7-13% increase in overall accuracy and up to 30% increase across different environment dynamics at the expense of 3mW power overhead.
arXiv Detail & Related papers (2020-12-04T23:06:56Z) - OmniTact: A Multi-Directional High Resolution Touch Sensor [109.28703530853542]
Existing tactile sensors are either flat, have small sensitive fields or only provide low-resolution signals.
We introduce OmniTact, a multi-directional high-resolution tactile sensor.
We evaluate the capabilities of OmniTact on a challenging robotic control task.
arXiv Detail & Related papers (2020-03-16T01:31:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.