Hilbert space fragmentation at the origin of disorder-free localization in the lattice Schwinger model
- URL: http://arxiv.org/abs/2409.08320v1
- Date: Thu, 12 Sep 2024 18:00:00 GMT
- Title: Hilbert space fragmentation at the origin of disorder-free localization in the lattice Schwinger model
- Authors: Jared Jeyaretnam, Tanmay Bhore, Jesse J. Osborne, Jad C. Halimeh, Zlatko Papić,
- Abstract summary: We study the possibility of disorder-free localization in the lattice Schwinger model.
We argue that entanglement growth, averaged over charge sectors, is more naturally explained as either single-logarithmic or a weak power law in time.
Our results thus suggest the existence of a single ergodicity-breaking regime due to Hilbert space fragmentation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lattice gauge theories, the discretized cousins of continuum gauge theories, have become an important platform for the exploration of non-equilibrium phenomena beyond their original scope in the Standard Model. In particular, recent works have reported the possibility of disorder-free localization in the lattice Schwinger model. Using degenerate perturbation theory and numerical simulations based on exact diagonalization and matrix product states, we perform a detailed characterization of thermalization breakdown in the Schwinger model including its spectral properties, the structure of eigenstates, and out-of-equilibrium quench dynamics. We scrutinize the strong-coupling limit of the model, in which an intriguing, double-logarithmic-in-time, growth of entanglement was previously proposed from the initial vacuum state. We identify the origin of this ultraslow growth of entanglement as due to an approximate Hilbert space fragmentation and the emergence of a dynamical constraint on particle hopping, which gives rise to sharp jumps in the entanglement entropy dynamics within individual background charge sectors. Based on the statistics of jump times, we argue that the entanglement growth, averaged over charge sectors, is more naturally explained as either single-logarithmic or a weak power law in time. Our results thus suggest the existence of a single ergodicity-breaking regime due to Hilbert space fragmentation, whose properties are reminiscent of conventional many-body localization within the numerically accessible system sizes.
Related papers
- Quantum Fragmentation in the Extended Quantum Breakdown Model [0.0]
We analytically show that, in the absence of any magnetic field for the spins, the model exhibits Hilbert space fragmentation into exponentially many Krylov subspaces.
We also study the long-time behavior of the entanglement entropy and its deviation from the expected Page value as a probe of ergodicity in the system.
arXiv Detail & Related papers (2024-01-29T19:00:10Z) - Exponentially slow thermalization and the robustness of Hilbert space
fragmentation [3.074411226628252]
We study how thermalization occurs in situations where the constraints are not exact.
For product states quenched under Hamiltonian dynamics, we numerically observe an exponentially long thermalization time.
Slow thermalization in this model is shown to be a consequence of strong bottlenecks in configuration space.
arXiv Detail & Related papers (2024-01-20T18:40:20Z) - Dynamics of inhomogeneous spin ensembles with all-to-all interactions:
breaking permutational invariance [49.1574468325115]
We investigate the consequences of introducing non-uniform initial conditions in the dynamics of spin ensembles characterized by all-to-all interactions.
We find that the dynamics of the spin ensemble now spans a more expansive effective Hilbert space.
arXiv Detail & Related papers (2023-09-19T16:44:14Z) - The Closed and Open Unbalanced Dicke Trimer Model: Critical Properties
and Nonlinear Semiclassical Dynamics [5.824077816472029]
We study a generalization of the recently introduced Dicke trimer model.
In the extreme unbalanced limit, the symmetry of the Tavis-Cummings model is restored.
We observe the emergence of nonequilibrium phases characterized by trivial and non-trivial dynamical signatures.
arXiv Detail & Related papers (2023-03-21T11:23:18Z) - Fermion production at the boundary of an expanding universe: a cold-atom
gravitational analogue [68.8204255655161]
We study the phenomenon of cosmological particle production of Dirac fermions in a Friedman-Robertson-Walker spacetime.
We present a scheme for the quantum simulation of this gravitational analogue by means of ultra-cold atoms in Raman optical lattices.
arXiv Detail & Related papers (2022-12-02T18:28:23Z) - Hilbert space fragmentation and slow dynamics in particle-conserving
quantum East models [0.0]
We introduce a hitherto unexplored family of kinetically constrained models featuring a conserved particle number.
We reproduce the logarithmic dynamics observed in the quantum case using a classically simulable cellular automaton.
arXiv Detail & Related papers (2022-10-27T16:50:27Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Spreading of a local excitation in a Quantum Hierarchical Model [62.997667081978825]
We study the dynamics of the quantum Dyson hierarchical model in its paramagnetic phase.
An initial state made by a local excitation of the paramagnetic ground state is considered.
A localization mechanism is found and the excitation remains close to its initial position at arbitrary times.
arXiv Detail & Related papers (2022-07-14T10:05:20Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Dynamical Scaling of Surface Roughness and Entanglement Entropy in
Disordered Fermion Models [0.0]
We numerically study dynamics of fermions on disordered one-dimensional potentials exhibiting localization.
We find that partially localized states in the delocalized phase of the random-dimer model lead to anomalous scaling.
arXiv Detail & Related papers (2021-01-20T14:13:20Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.