Federated One-Shot Ensemble Clustering
- URL: http://arxiv.org/abs/2409.08396v1
- Date: Thu, 12 Sep 2024 20:55:21 GMT
- Title: Federated One-Shot Ensemble Clustering
- Authors: Rui Duan, Xin Xiong, Jueyi Liu, Katherine P. Liao, Tianxi Cai,
- Abstract summary: Cluster analysis across multiple institutions poses significant challenges due to data-sharing restrictions.
We introduce the Federated One-shot Ensemble Clustering (FONT) algorithm, a novel solution tailored for multi-site analyses.
FONT requires only a single round of communication between sites and ensures privacy by exchanging only fitted model parameters and class labels.
- Score: 8.883940713319696
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Cluster analysis across multiple institutions poses significant challenges due to data-sharing restrictions. To overcome these limitations, we introduce the Federated One-shot Ensemble Clustering (FONT) algorithm, a novel solution tailored for multi-site analyses under such constraints. FONT requires only a single round of communication between sites and ensures privacy by exchanging only fitted model parameters and class labels. The algorithm combines locally fitted clustering models into a data-adaptive ensemble, making it broadly applicable to various clustering techniques and robust to differences in cluster proportions across sites. Our theoretical analysis validates the effectiveness of the data-adaptive weights learned by FONT, and simulation studies demonstrate its superior performance compared to existing benchmark methods. We applied FONT to identify subgroups of patients with rheumatoid arthritis across two health systems, revealing improved consistency of patient clusters across sites, while locally fitted clusters proved less transferable. FONT is particularly well-suited for real-world applications with stringent communication and privacy constraints, offering a scalable and practical solution for multi-site clustering.
Related papers
- MOSIC: Model-Agnostic Optimal Subgroup Identification with Multi-Constraint for Improved Reliability [11.997050225896679]
We propose a model-agnostic framework for optimal subgroup identification under multiple constraints.
Our method is stable and highly flexible, supporting various models and techniques for estimating and optimizing treatment effectiveness with observational data.
arXiv Detail & Related papers (2025-04-29T16:25:23Z) - Interaction-Aware Gaussian Weighting for Clustered Federated Learning [58.92159838586751]
Federated Learning (FL) emerged as a decentralized paradigm to train models while preserving privacy.
We propose a novel clustered FL method, FedGWC (Federated Gaussian Weighting Clustering), which groups clients based on their data distribution.
Our experiments on benchmark datasets show that FedGWC outperforms existing FL algorithms in cluster quality and classification accuracy.
arXiv Detail & Related papers (2025-02-05T16:33:36Z) - Semi-Supervised Clustering via Structural Entropy with Different
Constraints [30.215985625884922]
We present Semi-supervised clustering via Structural Entropy (SSE), a novel method that can incorporate different types of constraints from diverse sources to perform both partitioning and hierarchical clustering.
We evaluate SSE on nine clustering datasets and compare it with eleven semi-supervised partitioning and hierarchical clustering methods.
arXiv Detail & Related papers (2023-12-18T04:00:40Z) - Reinforcement Federated Learning Method Based on Adaptive OPTICS
Clustering [19.73560248813166]
This paper proposes an adaptive OPTICS clustering algorithm for federated learning.
By perceiving the clustering environment as a Markov decision process, the goal is to find the best parameters of the OPTICS cluster.
The reliability and practicability of this method have been verified on the experimental data, and its effec-tiveness and superiority have been proved.
arXiv Detail & Related papers (2023-06-22T13:11:19Z) - Efficient Bilateral Cross-Modality Cluster Matching for Unsupervised Visible-Infrared Person ReID [56.573905143954015]
We propose a novel bilateral cluster matching-based learning framework to reduce the modality gap by matching cross-modality clusters.
Under such a supervisory signal, a Modality-Specific and Modality-Agnostic (MSMA) contrastive learning framework is proposed to align features jointly at a cluster-level.
Experiments on the public SYSU-MM01 and RegDB datasets demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2023-05-22T03:27:46Z) - DivClust: Controlling Diversity in Deep Clustering [47.85350249697335]
DivClust produces consensus clustering solutions that consistently outperform single-clustering baselines.
Our method effectively controls diversity across frameworks and datasets with very small additional computational cost.
arXiv Detail & Related papers (2023-04-03T14:45:43Z) - Differentially Private Federated Clustering over Non-IID Data [59.611244450530315]
clustering clusters (FedC) problem aims to accurately partition unlabeled data samples distributed over massive clients into finite clients under the orchestration of a server.
We propose a novel FedC algorithm using differential privacy convergence technique, referred to as DP-Fed, in which partial participation and multiple clients are also considered.
Various attributes of the proposed DP-Fed are obtained through theoretical analyses of privacy protection, especially for the case of non-identically and independently distributed (non-i.i.d.) data.
arXiv Detail & Related papers (2023-01-03T05:38:43Z) - Simple and Scalable Algorithms for Cluster-Aware Precision Medicine [0.0]
We propose a simple and scalable approach to joint clustering and embedding.
This novel, cluster-aware embedding approach overcomes the complexity and limitations of current joint embedding and clustering methods.
Our approach does not require the user to choose the desired number of clusters, but instead yields interpretable dendrograms of hierarchically clustered embeddings.
arXiv Detail & Related papers (2022-11-29T19:27:26Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
We formulate a novel clustering model, which exploits the non-negative feature property and incorporates the multi-view information into a unified joint learning framework.
We also explore, for the first time, the multi-model non-negative graph-based approach to clustering data based on deep features.
arXiv Detail & Related papers (2022-11-03T08:18:27Z) - A One-shot Framework for Distributed Clustered Learning in Heterogeneous
Environments [54.172993875654015]
The paper proposes a family of communication efficient methods for distributed learning in heterogeneous environments.
One-shot approach, based on local computations at the users and a clustering based aggregation step at the server is shown to provide strong learning guarantees.
For strongly convex problems it is shown that, as long as the number of data points per user is above a threshold, the proposed approach achieves order-optimal mean-squared error rates in terms of the sample size.
arXiv Detail & Related papers (2022-09-22T09:04:10Z) - Deep Conditional Gaussian Mixture Model for Constrained Clustering [7.070883800886882]
Constrained clustering can leverage prior information on a growing amount of only partially labeled data.
We propose a novel framework for constrained clustering that is intuitive, interpretable, and can be trained efficiently in the framework of gradient variational inference.
arXiv Detail & Related papers (2021-06-11T13:38:09Z) - Ensemble Model with Batch Spectral Regularization and Data Blending for
Cross-Domain Few-Shot Learning with Unlabeled Data [75.94147344921355]
We build a multi-branch ensemble framework by using diverse feature transformation matrices.
We propose a data blending method to exploit the unlabeled data and augment the sparse support set in the target domain.
arXiv Detail & Related papers (2020-06-08T02:27:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.