Wasserstein Distributionally Robust Multiclass Support Vector Machine
- URL: http://arxiv.org/abs/2409.08409v1
- Date: Thu, 12 Sep 2024 21:40:04 GMT
- Title: Wasserstein Distributionally Robust Multiclass Support Vector Machine
- Authors: Michael Ibrahim, Heraldo Rozas, Nagi Gebraeel,
- Abstract summary: We study the problem of multiclass classification for settings where data features $mathbfx$ and their labels $mathbfy$ are uncertain.
We use Wasserstein distributionally robust optimization to develop a robust version of the multiclass support vector machine (SVM) characterized by the Crammer-Singer (CS) loss.
Our numerical experiments demonstrate that our model outperforms state-of-the art OVA models in settings where the training data is highly imbalanced.
- Score: 1.8570591025615457
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of multiclass classification for settings where data features $\mathbf{x}$ and their labels $\mathbf{y}$ are uncertain. We identify that distributionally robust one-vs-all (OVA) classifiers often struggle in settings with imbalanced data. To address this issue, we use Wasserstein distributionally robust optimization to develop a robust version of the multiclass support vector machine (SVM) characterized by the Crammer-Singer (CS) loss. First, we prove that the CS loss is bounded from above by a Lipschitz continuous function for all $\mathbf{x} \in \mathcal{X}$ and $\mathbf{y} \in \mathcal{Y}$, then we exploit strong duality results to express the dual of the worst-case risk problem, and we show that the worst-case risk minimization problem admits a tractable convex reformulation due to the regularity of the CS loss. Moreover, we develop a kernel version of our proposed model to account for nonlinear class separation, and we show that it admits a tractable convex upper bound. We also propose a projected subgradient method algorithm for a special case of our proposed linear model to improve scalability. Our numerical experiments demonstrate that our model outperforms state-of-the art OVA models in settings where the training data is highly imbalanced. We also show through experiments on popular real-world datasets that our proposed model often outperforms its regularized counterpart as the first accounts for uncertain labels unlike the latter.
Related papers
- Computational-Statistical Gaps in Gaussian Single-Index Models [77.1473134227844]
Single-Index Models are high-dimensional regression problems with planted structure.
We show that computationally efficient algorithms, both within the Statistical Query (SQ) and the Low-Degree Polynomial (LDP) framework, necessarily require $Omega(dkstar/2)$ samples.
arXiv Detail & Related papers (2024-03-08T18:50:19Z) - $t^3$-Variational Autoencoder: Learning Heavy-tailed Data with Student's
t and Power Divergence [7.0479532872043755]
$t3$VAE is a modified VAE framework that incorporates Student's t-distributions for the prior, encoder, and decoder.
We show that $t3$VAE significantly outperforms other models on CelebA and imbalanced CIFAR-100 datasets.
arXiv Detail & Related papers (2023-12-02T13:14:28Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
This paper proposes a flexible algorithmic framework for graph learning under low-rank structural constraints.
The problem is expressed as penalized maximum likelihood estimation of an elliptical distribution.
We leverage geometries of positive definite matrices and positive semi-definite matrices of fixed rank that are well suited to elliptical models.
arXiv Detail & Related papers (2022-10-21T13:19:45Z) - Universal and data-adaptive algorithms for model selection in linear
contextual bandits [52.47796554359261]
We consider the simplest non-trivial instance of model-selection: distinguishing a simple multi-armed bandit problem from a linear contextual bandit problem.
We introduce new algorithms that explore in a data-adaptive manner and provide guarantees of the form $mathcalO(dalpha T1- alpha)$.
Our approach extends to model selection among nested linear contextual bandits under some additional assumptions.
arXiv Detail & Related papers (2021-11-08T18:05:35Z) - Distributionally Robust Optimization with Markovian Data [8.126833795693699]
We study a program where the probability distribution of the uncertain problem parameters is unknown.
We propose a data-driven distributionally to estimate the problem's objective function and optimal solution.
arXiv Detail & Related papers (2021-06-12T10:59:02Z) - Learning Gaussian Mixtures with Generalised Linear Models: Precise
Asymptotics in High-dimensions [79.35722941720734]
Generalised linear models for multi-class classification problems are one of the fundamental building blocks of modern machine learning tasks.
We prove exacts characterising the estimator in high-dimensions via empirical risk minimisation.
We discuss how our theory can be applied beyond the scope of synthetic data.
arXiv Detail & Related papers (2021-06-07T16:53:56Z) - Large-Scale Methods for Distributionally Robust Optimization [53.98643772533416]
We prove that our algorithms require a number of evaluations gradient independent of training set size and number of parameters.
Experiments on MNIST and ImageNet confirm the theoretical scaling of our algorithms, which are 9--36 times more efficient than full-batch methods.
arXiv Detail & Related papers (2020-10-12T17:41:44Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z) - Estimating Principal Components under Adversarial Perturbations [25.778123431786653]
We study a natural model of robustness for high-dimensional statistical estimation problems.
Our model is motivated by emerging paradigms such as low precision machine learning and adversarial training.
arXiv Detail & Related papers (2020-05-31T20:27:19Z) - A Precise High-Dimensional Asymptotic Theory for Boosting and
Minimum-$\ell_1$-Norm Interpolated Classifiers [3.167685495996986]
This paper establishes a precise high-dimensional theory for boosting on separable data.
Under a class of statistical models, we provide an exact analysis of the universality error of boosting.
We also explicitly pin down the relation between the boosting test error and the optimal Bayes error.
arXiv Detail & Related papers (2020-02-05T00:24:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.