CasDyF-Net: Image Dehazing via Cascaded Dynamic Filters
- URL: http://arxiv.org/abs/2409.08510v1
- Date: Fri, 13 Sep 2024 03:20:38 GMT
- Title: CasDyF-Net: Image Dehazing via Cascaded Dynamic Filters
- Authors: Wang Yinglong, He Bin,
- Abstract summary: Image dehazing aims to restore image clarity and visual quality by reducing atmospheric scattering and absorption effects.
Inspired by dynamic filtering, we propose using cascaded dynamic filters to create a multi-branch network.
Experiments on RESIDE, Haze4K, and O-Haze datasets validate our method's effectiveness.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image dehazing aims to restore image clarity and visual quality by reducing atmospheric scattering and absorption effects. While deep learning has made significant strides in this area, more and more methods are constrained by network depth. Consequently, lots of approaches have adopted parallel branching strategies. however, they often prioritize aspects such as resolution, receptive field, or frequency domain segmentation without dynamically partitioning branches based on the distribution of input features. Inspired by dynamic filtering, we propose using cascaded dynamic filters to create a multi-branch network by dynamically generating filter kernels based on feature map distribution. To better handle branch features, we propose a residual multiscale block (RMB), combining different receptive fields. Furthermore, we also introduce a dynamic convolution-based local fusion method to merge features from adjacent branches. Experiments on RESIDE, Haze4K, and O-Haze datasets validate our method's effectiveness, with our model achieving a PSNR of 43.21dB on the RESIDE-Indoor dataset. The code is available at https://github.com/dauing/CasDyF-Net.
Related papers
- Decomposed Guided Dynamic Filters for Efficient RGB-Guided Depth
Completion [46.04264366475848]
RGB-guided depth completion aims at predicting dense depth maps from sparse depth measurements and corresponding RGB images.
Guided dynamic filters generate spatially-variant depth-wise separable convolutional filters from RGB features to guide depth features.
We propose to decompose the guided dynamic filters into a spatially-shared component multiplied by content-adaptive adaptors at each spatial location.
arXiv Detail & Related papers (2023-09-05T08:37:58Z) - Mutual-Guided Dynamic Network for Image Fusion [51.615598671899335]
We propose a novel mutual-guided dynamic network (MGDN) for image fusion, which allows for effective information utilization across different locations and inputs.
Experimental results on five benchmark datasets demonstrate that our proposed method outperforms existing methods on four image fusion tasks.
arXiv Detail & Related papers (2023-08-24T03:50:37Z) - MFGNet: Dynamic Modality-Aware Filter Generation for RGB-T Tracking [72.65494220685525]
We propose a new dynamic modality-aware filter generation module (named MFGNet) to boost the message communication between visible and thermal data.
We generate dynamic modality-aware filters with two independent networks. The visible and thermal filters will be used to conduct a dynamic convolutional operation on their corresponding input feature maps respectively.
To address issues caused by heavy occlusion, fast motion, and out-of-view, we propose to conduct a joint local and global search by exploiting a new direction-aware target-driven attention mechanism.
arXiv Detail & Related papers (2021-07-22T03:10:51Z) - Manifold Regularized Dynamic Network Pruning [102.24146031250034]
This paper proposes a new paradigm that dynamically removes redundant filters by embedding the manifold information of all instances into the space of pruned networks.
The effectiveness of the proposed method is verified on several benchmarks, which shows better performance in terms of both accuracy and computational cost.
arXiv Detail & Related papers (2021-03-10T03:59:03Z) - Delving Deeper into Anti-aliasing in ConvNets [42.82751522973616]
Aliasing refers to the phenomenon that high frequency signals degenerate into completely different ones after sampling.
We propose an adaptive content-aware low-pass filtering layer, which predicts separate filter weights for each spatial location and channel group.
arXiv Detail & Related papers (2020-08-21T17:56:04Z) - Hierarchical Dynamic Filtering Network for RGB-D Salient Object
Detection [91.43066633305662]
The main purpose of RGB-D salient object detection (SOD) is how to better integrate and utilize cross-modal fusion information.
In this paper, we explore these issues from a new perspective.
We implement a kind of more flexible and efficient multi-scale cross-modal feature processing.
arXiv Detail & Related papers (2020-07-13T07:59:55Z) - Dependency Aware Filter Pruning [74.69495455411987]
Pruning a proportion of unimportant filters is an efficient way to mitigate the inference cost.
Previous work prunes filters according to their weight norms or the corresponding batch-norm scaling factors.
We propose a novel mechanism to dynamically control the sparsity-inducing regularization so as to achieve the desired sparsity.
arXiv Detail & Related papers (2020-05-06T07:41:22Z) - Image Fine-grained Inpainting [89.17316318927621]
We present a one-stage model that utilizes dense combinations of dilated convolutions to obtain larger and more effective receptive fields.
To better train this efficient generator, except for frequently-used VGG feature matching loss, we design a novel self-guided regression loss.
We also employ a discriminator with local and global branches to ensure local-global contents consistency.
arXiv Detail & Related papers (2020-02-07T03:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.