Hybrid-TTA: Continual Test-time Adaptation via Dynamic Domain Shift Detection
- URL: http://arxiv.org/abs/2409.08566v1
- Date: Fri, 13 Sep 2024 06:36:31 GMT
- Title: Hybrid-TTA: Continual Test-time Adaptation via Dynamic Domain Shift Detection
- Authors: Hyewon Park, Hyejin Park, Jueun Ko, Dongbo Min,
- Abstract summary: Continual Test Time Adaptation (CTTA) has emerged as a critical approach for bridging the domain gap between the controlled training environments and the real-world scenarios.
We propose Hybrid-TTA, a holistic approach that dynamically selects instance-wise tuning method for optimal adaptation.
Our approach achieves a notable 1.6%p improvement in mIoU on the Cityscapes-to-ACDC benchmark dataset.
- Score: 14.382503104075917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continual Test Time Adaptation (CTTA) has emerged as a critical approach for bridging the domain gap between the controlled training environments and the real-world scenarios, enhancing model adaptability and robustness. Existing CTTA methods, typically categorized into Full-Tuning (FT) and Efficient-Tuning (ET), struggle with effectively addressing domain shifts. To overcome these challenges, we propose Hybrid-TTA, a holistic approach that dynamically selects instance-wise tuning method for optimal adaptation. Our approach introduces the Dynamic Domain Shift Detection (DDSD) strategy, which identifies domain shifts by leveraging temporal correlations in input sequences and dynamically switches between FT and ET to adapt to varying domain shifts effectively. Additionally, the Masked Image Modeling based Adaptation (MIMA) framework is integrated to ensure domain-agnostic robustness with minimal computational overhead. Our Hybrid-TTA achieves a notable 1.6%p improvement in mIoU on the Cityscapes-to-ACDC benchmark dataset, surpassing previous state-of-the-art methods and offering a robust solution for real-world continual adaptation challenges.
Related papers
- BECoTTA: Input-dependent Online Blending of Experts for Continual Test-time Adaptation [59.1863462632777]
Continual Test Time Adaptation (CTTA) is required to adapt efficiently to continuous unseen domains while retaining previously learned knowledge.
This paper proposes BECoTTA, an input-dependent and efficient modular framework for CTTA.
We validate that our method outperforms multiple CTTA scenarios, including disjoint and gradual domain shits, while only requiring 98% fewer trainable parameters.
arXiv Detail & Related papers (2024-02-13T18:37:53Z) - AR-TTA: A Simple Method for Real-World Continual Test-Time Adaptation [1.4530711901349282]
We propose to validate test-time adaptation methods using datasets for autonomous driving, namely CLAD-C and SHIFT.
We observe that current test-time adaptation methods struggle to effectively handle varying degrees of domain shift.
We enhance the well-established self-training framework by incorporating a small memory buffer to increase model stability.
arXiv Detail & Related papers (2023-09-18T19:34:23Z) - ViDA: Homeostatic Visual Domain Adapter for Continual Test Time Adaptation [48.039156140237615]
A Continual Test-Time Adaptation task is proposed to adapt the pre-trained model to continually changing target domains.
We design a Visual Domain Adapter (ViDA) for CTTA, explicitly handling both domain-specific and domain-shared knowledge.
Our proposed method achieves state-of-the-art performance in both classification and segmentation CTTA tasks.
arXiv Detail & Related papers (2023-06-07T11:18:53Z) - IDA: Informed Domain Adaptive Semantic Segmentation [51.12107564372869]
We propose an Domain Informed Adaptation (IDA) model, a self-training framework that mixes the data based on class-level segmentation performance.
In our IDA model, the class-level performance is tracked by an expected confidence score (ECS) and we then use a dynamic schedule to determine the mixing ratio for data in different domains.
Our proposed method is able to outperform the state-of-the-art UDA-SS method by a margin of 1.1 mIoU in the adaptation of GTA-V to Cityscapes and of 0.9 mIoU in the adaptation of SYNTHIA to City
arXiv Detail & Related papers (2023-03-05T18:16:34Z) - Test-time Adaptation in the Dynamic World with Compound Domain Knowledge
Management [75.86903206636741]
Test-time adaptation (TTA) allows the model to adapt itself to novel environments and improve its performance during test time.
Several works for TTA have shown promising adaptation performances in continuously changing environments.
This paper first presents a robust TTA framework with compound domain knowledge management.
We then devise novel regularization which modulates the adaptation rates using domain-similarity between the source and the current target domain.
arXiv Detail & Related papers (2022-12-16T09:02:01Z) - Gradual Test-Time Adaptation by Self-Training and Style Transfer [5.110894308882439]
We show the natural connection between gradual domain adaptation and test-time adaptation.
We propose a new method based on self-training and style transfer.
We show the effectiveness of our method on the continual and gradual CIFAR10C, CIFAR100C, and ImageNet-C benchmark.
arXiv Detail & Related papers (2022-08-16T13:12:19Z) - Amplitude Spectrum Transformation for Open Compound Domain Adaptive
Semantic Segmentation [62.68759523116924]
Open compound domain adaptation (OCDA) has emerged as a practical adaptation setting.
We propose a novel feature space Amplitude Spectrum Transformation (AST)
arXiv Detail & Related papers (2022-02-09T05:40:34Z) - AdaStereo: An Efficient Domain-Adaptive Stereo Matching Approach [50.855679274530615]
We present a novel domain-adaptive approach called AdaStereo to align multi-level representations for deep stereo matching networks.
Our models achieve state-of-the-art cross-domain performance on multiple benchmarks, including KITTI, Middlebury, ETH3D and DrivingStereo.
Our method is robust to various domain adaptation settings, and can be easily integrated into quick adaptation application scenarios and real-world deployments.
arXiv Detail & Related papers (2021-12-09T15:10:47Z) - Exploiting Diverse Characteristics and Adversarial Ambivalence for
Domain Adaptive Segmentation [20.13548631627542]
Adapting semantic segmentation models to new domains is an important but challenging problem.
We propose a condition-guided adaptation framework that is empowered by a special progressive adversarial training mechanism and a novel self-training policy.
We evaluate our method on various adaptation scenarios where the target images vary in weather conditions.
arXiv Detail & Related papers (2020-12-10T11:50:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.