NeSHFS: Neighborhood Search with Heuristic-based Feature Selection for Click-Through Rate Prediction
- URL: http://arxiv.org/abs/2409.08703v1
- Date: Fri, 13 Sep 2024 10:43:18 GMT
- Title: NeSHFS: Neighborhood Search with Heuristic-based Feature Selection for Click-Through Rate Prediction
- Authors: Dogukan Aksu, Ismail Hakki Toroslu, Hasan Davulcu,
- Abstract summary: Click-through-rate (CTR) prediction plays an important role in online advertising and ad recommender systems.
We propose a CTR algorithm named Neighborhood Search with Heuristic-based Feature Selection (NeSHFS) to enhance CTR prediction performance.
- Score: 1.3805049652130312
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Click-through-rate (CTR) prediction plays an important role in online advertising and ad recommender systems. In the past decade, maximizing CTR has been the main focus of model development and solution creation. Therefore, researchers and practitioners have proposed various models and solutions to enhance the effectiveness of CTR prediction. Most of the existing literature focuses on capturing either implicit or explicit feature interactions. Although implicit interactions are successfully captured in some studies, explicit interactions present a challenge for achieving high CTR by extracting both low-order and high-order feature interactions. Unnecessary and irrelevant features may cause high computational time and low prediction performance. Furthermore, certain features may perform well with specific predictive models while underperforming with others. Also, feature distribution may fluctuate due to traffic variations. Most importantly, in live production environments, resources are limited, and the time for inference is just as crucial as training time. Because of all these reasons, feature selection is one of the most important factors in enhancing CTR prediction model performance. Simple filter-based feature selection algorithms do not perform well and they are not sufficient. An effective and efficient feature selection algorithm is needed to consistently filter the most useful features during live CTR prediction process. In this paper, we propose a heuristic algorithm named Neighborhood Search with Heuristic-based Feature Selection (NeSHFS) to enhance CTR prediction performance while reducing dimensionality and training time costs. We conduct comprehensive experiments on three public datasets to validate the efficiency and effectiveness of our proposed solution.
Related papers
- LLM-Select: Feature Selection with Large Language Models [64.5099482021597]
Large language models (LLMs) are capable of selecting the most predictive features, with performance rivaling the standard tools of data science.
Our findings suggest that LLMs may be useful not only for selecting the best features for training but also for deciding which features to collect in the first place.
arXiv Detail & Related papers (2024-07-02T22:23:40Z) - Helen: Optimizing CTR Prediction Models with Frequency-wise Hessian
Eigenvalue Regularization [22.964109377128523]
Click-Through Rate (CTR) prediction holds paramount significance in online advertising and recommendation scenarios.
Despite the proliferation of recent CTR prediction models, the improvements in performance have remained limited.
arXiv Detail & Related papers (2024-02-23T15:00:46Z) - Causal Feature Selection via Transfer Entropy [59.999594949050596]
Causal discovery aims to identify causal relationships between features with observational data.
We introduce a new causal feature selection approach that relies on the forward and backward feature selection procedures.
We provide theoretical guarantees on the regression and classification errors for both the exact and the finite-sample cases.
arXiv Detail & Related papers (2023-10-17T08:04:45Z) - MAP: A Model-agnostic Pretraining Framework for Click-through Rate
Prediction [39.48740397029264]
We propose a Model-agnostic pretraining (MAP) framework that applies feature corruption and recovery on multi-field categorical data.
We derive two practical algorithms: masked feature prediction (RFD) and replaced feature detection (RFD)
arXiv Detail & Related papers (2023-08-03T12:55:55Z) - DELTA: Dynamic Embedding Learning with Truncated Conscious Attention for
CTR Prediction [61.68415731896613]
Click-Through Rate (CTR) prediction is a pivotal task in product and content recommendation.
We propose a model that enables Dynamic Embedding Learning with Truncated Conscious Attention for CTR prediction.
arXiv Detail & Related papers (2023-05-03T12:34:45Z) - Meta-Wrapper: Differentiable Wrapping Operator for User Interest
Selection in CTR Prediction [97.99938802797377]
Click-through rate (CTR) prediction, whose goal is to predict the probability of the user to click on an item, has become increasingly significant in recommender systems.
Recent deep learning models with the ability to automatically extract the user interest from his/her behaviors have achieved great success.
We propose a novel approach under the framework of the wrapper method, which is named Meta-Wrapper.
arXiv Detail & Related papers (2022-06-28T03:28:15Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
We propose a fast unsupervised feature selection method, named as, Compactness Score (CSUFS) to select desired features.
Our proposed algorithm seems to be more accurate and efficient compared with existing algorithms.
arXiv Detail & Related papers (2022-01-31T13:01:37Z) - Understanding Interlocking Dynamics of Cooperative Rationalization [90.6863969334526]
Selective rationalization explains the prediction of complex neural networks by finding a small subset of the input that is sufficient to predict the neural model output.
We reveal a major problem with such cooperative rationalization paradigm -- model interlocking.
We propose a new rationalization framework, called A2R, which introduces a third component into the architecture, a predictor driven by soft attention as opposed to selection.
arXiv Detail & Related papers (2021-10-26T17:39:18Z) - Memorize, Factorize, or be Na\"ive: Learning Optimal Feature Interaction
Methods for CTR Prediction [29.343267933348372]
We propose a framework called OptInter which finds the most suitable modelling method for each feature interaction.
Our experiments show that OptInter improves the best performed state-of-the-art baseline deep CTR models by up to 2.21%.
arXiv Detail & Related papers (2021-08-03T03:03:34Z) - Looking at CTR Prediction Again: Is Attention All You Need? [4.873362301533825]
Click-through rate (CTR) prediction is a critical problem in web search, recommendation systems and online advertisement displaying.
We use the discrete choice model in economics to redefine the CTR prediction problem, and propose a general neural network framework built on self-attention mechanism.
It is found that most existing CTR prediction models align with our proposed general framework.
arXiv Detail & Related papers (2021-05-12T10:27:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.