Online Network Inference from Graph-Stationary Signals with Hidden Nodes
- URL: http://arxiv.org/abs/2409.08760v1
- Date: Fri, 13 Sep 2024 12:09:09 GMT
- Title: Online Network Inference from Graph-Stationary Signals with Hidden Nodes
- Authors: Andrei Buciulea, Madeline Navarro, Samuel Rey, Santiago Segarra, Antonio G. Marques,
- Abstract summary: We present a novel method for online graph estimation that accounts for the presence of hidden nodes.
We then formulate a convex optimization problem for graph learning from streaming, incomplete graph signals.
- Score: 31.927912288598467
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph learning is the fundamental task of estimating unknown graph connectivity from available data. Typical approaches assume that not only is all information available simultaneously but also that all nodes can be observed. However, in many real-world scenarios, data can neither be known completely nor obtained all at once. We present a novel method for online graph estimation that accounts for the presence of hidden nodes. We consider signals that are stationary on the underlying graph, which provides a model for the unknown connections to hidden nodes. We then formulate a convex optimization problem for graph learning from streaming, incomplete graph signals. We solve the proposed problem through an efficient proximal gradient algorithm that can run in real-time as data arrives sequentially. Additionally, we provide theoretical conditions under which our online algorithm is similar to batch-wise solutions. Through experimental results on synthetic and real-world data, we demonstrate the viability of our approach for online graph learning in the presence of missing observations.
Related papers
- Joint Signal Recovery and Graph Learning from Incomplete Time-Series [24.308357458676937]
In this work, we aim to learn a graph from incomplete time-series observations.
We propose an algorithm based on the method of block successive upperbound minimization.
Simulation results on synthetic and real time-series demonstrate the performance of the proposed method.
arXiv Detail & Related papers (2023-12-28T10:27:04Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Joint graph learning from Gaussian observations in the presence of
hidden nodes [26.133725549667734]
We propose a joint graph learning method that takes into account the presence of hidden (latent) variables.
We exploit the structure resulting from the previous considerations to propose a convex optimization problem.
We compare the proposed algorithm with different baselines and evaluate its performance over synthetic and real-world graphs.
arXiv Detail & Related papers (2022-12-04T13:03:41Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Distributed Graph Learning with Smooth Data Priors [61.405131495287755]
We propose a novel distributed graph learning algorithm, which permits to infer a graph from signal observations on the nodes.
Our results show that the distributed approach has a lower communication cost than a centralised algorithm without compromising the accuracy in the inferred graph.
arXiv Detail & Related papers (2021-12-11T00:52:02Z) - Distributionally Robust Semi-Supervised Learning Over Graphs [68.29280230284712]
Semi-supervised learning (SSL) over graph-structured data emerges in many network science applications.
To efficiently manage learning over graphs, variants of graph neural networks (GNNs) have been developed recently.
Despite their success in practice, most of existing methods are unable to handle graphs with uncertain nodal attributes.
Challenges also arise due to distributional uncertainties associated with data acquired by noisy measurements.
A distributionally robust learning framework is developed, where the objective is to train models that exhibit quantifiable robustness against perturbations.
arXiv Detail & Related papers (2021-10-20T14:23:54Z) - Learning Graphs from Smooth Signals under Moment Uncertainty [23.868075779606425]
We consider the problem of inferring the graph structure from a given set of graph signals.
Traditional graph learning models do not take this distributional uncertainty into account.
arXiv Detail & Related papers (2021-05-12T06:47:34Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
Graph embedding is a way to transform and encode the data structure in high dimensional and non-Euclidean feature space.
CensNet is a general graph embedding framework, which embeds both nodes and edges to a latent feature space.
Our approach achieves or matches the state-of-the-art performance in four graph learning tasks.
arXiv Detail & Related papers (2020-10-25T22:39:31Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
We consider the graph link prediction task, which is a classic graph analytical problem with many real-world applications.
In this formalism, a link prediction problem is converted to a graph classification task.
We propose to seek a radically different and novel path by making use of the line graphs in graph theory.
In particular, each node in a line graph corresponds to a unique edge in the original graph. Therefore, link prediction problems in the original graph can be equivalently solved as a node classification problem in its corresponding line graph, instead of a graph classification task.
arXiv Detail & Related papers (2020-10-20T05:54:31Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.