In-depth Analysis of Low-rank Matrix Factorisation in a Federated Setting
- URL: http://arxiv.org/abs/2409.08771v1
- Date: Fri, 13 Sep 2024 12:28:42 GMT
- Title: In-depth Analysis of Low-rank Matrix Factorisation in a Federated Setting
- Authors: Constantin Philippenko, Kevin Scaman, Laurent Massoulié,
- Abstract summary: We analyze a distributed algorithm to compute a low-rank matrix factorization on $N$ clients.
We obtain a global $mathbfV$ in $mathbbRd times r$ common to all clients and a local $mathbfUi$ in $mathbbRn_itimes r$.
- Score: 21.002519159190538
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We analyze a distributed algorithm to compute a low-rank matrix factorization on $N$ clients, each holding a local dataset $\mathbf{S}^i \in \mathbb{R}^{n_i \times d}$, mathematically, we seek to solve $min_{\mathbf{U}^i \in \mathbb{R}^{n_i\times r}, \mathbf{V}\in \mathbb{R}^{d \times r} } \frac{1}{2} \sum_{i=1}^N \|\mathbf{S}^i - \mathbf{U}^i \mathbf{V}^\top\|^2_{\text{F}}$. Considering a power initialization of $\mathbf{V}$, we rewrite the previous smooth non-convex problem into a smooth strongly-convex problem that we solve using a parallel Nesterov gradient descent potentially requiring a single step of communication at the initialization step. For any client $i$ in $\{1, \dots, N\}$, we obtain a global $\mathbf{V}$ in $\mathbb{R}^{d \times r}$ common to all clients and a local variable $\mathbf{U}^i$ in $\mathbb{R}^{n_i \times r}$. We provide a linear rate of convergence of the excess loss which depends on $\sigma_{\max} / \sigma_{r}$, where $\sigma_{r}$ is the $r^{\mathrm{th}}$ singular value of the concatenation $\mathbf{S}$ of the matrices $(\mathbf{S}^i)_{i=1}^N$. This result improves the rates of convergence given in the literature, which depend on $\sigma_{\max}^2 / \sigma_{\min}^2$. We provide an upper bound on the Frobenius-norm error of reconstruction under the power initialization strategy. We complete our analysis with experiments on both synthetic and real data.
Related papers
- The Communication Complexity of Approximating Matrix Rank [50.6867896228563]
We show that this problem has randomized communication complexity $Omega(frac1kcdot n2log|mathbbF|)$.
As an application, we obtain an $Omega(frac1kcdot n2log|mathbbF|)$ space lower bound for any streaming algorithm with $k$ passes.
arXiv Detail & Related papers (2024-10-26T06:21:42Z) - Provable Acceleration of Nesterov's Accelerated Gradient for Rectangular Matrix Factorization and Linear Neural Networks [46.04785603483612]
We prove that Nesterov's accelerated gradient attains an complexity $O(kappalogfrac1epsilon)$.
In particular, we prove that NAG can also attain an accelerated linear convergence rate.
arXiv Detail & Related papers (2024-10-12T20:33:37Z) - Efficient Continual Finite-Sum Minimization [52.5238287567572]
We propose a key twist into the finite-sum minimization, dubbed as continual finite-sum minimization.
Our approach significantly improves upon the $mathcalO(n/epsilon)$ FOs that $mathrmStochasticGradientDescent$ requires.
We also prove that there is no natural first-order method with $mathcalOleft(n/epsilonalpharight)$ complexity gradient for $alpha 1/4$, establishing that the first-order complexity of our method is nearly tight.
arXiv Detail & Related papers (2024-06-07T08:26:31Z) - Provably learning a multi-head attention layer [55.2904547651831]
Multi-head attention layer is one of the key components of the transformer architecture that sets it apart from traditional feed-forward models.
In this work, we initiate the study of provably learning a multi-head attention layer from random examples.
We prove computational lower bounds showing that in the worst case, exponential dependence on $m$ is unavoidable.
arXiv Detail & Related papers (2024-02-06T15:39:09Z) - Optimal Estimator for Linear Regression with Shuffled Labels [17.99906229036223]
This paper considers the task of linear regression with shuffled labels.
$mathbf Y in mathbb Rntimes m, mathbf Pi in mathbb Rntimes p, mathbf B in mathbb Rptimes m$, and $mathbf Win mathbb Rntimes m$, respectively.
arXiv Detail & Related papers (2023-10-02T16:44:47Z) - Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix
Factorization [54.29685789885059]
We introduce efficient $(1+varepsilon)$-approximation algorithms for the binary matrix factorization (BMF) problem.
The goal is to approximate $mathbfA$ as a product of low-rank factors.
Our techniques generalize to other common variants of the BMF problem.
arXiv Detail & Related papers (2023-06-02T18:55:27Z) - Convergence of Alternating Gradient Descent for Matrix Factorization [5.439020425819001]
We consider alternating gradient descent (AGD) with fixed step size applied to the asymmetric matrix factorization objective.
We show that, for a rank-$r$ matrix $mathbfA in mathbbRm times n$, smoothness $C$ in the complexity $T$ to be an absolute constant.
arXiv Detail & Related papers (2023-05-11T16:07:47Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
We study a function of the form $mathbfxmapstosigma(mathbfwcdotmathbfx)$ for monotone activations.
The goal of the learner is to output a hypothesis vector $mathbfw$ that $F(mathbbw)=C, epsilon$ with high probability.
arXiv Detail & Related papers (2022-06-17T17:55:43Z) - Global Convergence of Gradient Descent for Asymmetric Low-Rank Matrix
Factorization [49.090785356633695]
We study the asymmetric low-rank factorization problem: [mathbfU in mathbbRm min d, mathbfU$ and mathV$.
arXiv Detail & Related papers (2021-06-27T17:25:24Z) - On the computational and statistical complexity of over-parameterized
matrix sensing [30.785670369640872]
We consider solving the low rank matrix sensing problem with Factorized Gradient Descend (FGD) method.
By decomposing the factorized matrix $mathbfF$ into separate column spaces, we show that $|mathbfF_t - mathbfF_t - mathbfX*|_F2$ converges to a statistical error.
arXiv Detail & Related papers (2021-01-27T04:23:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.