Variational Calculation of the Hyperfine Stark Effect in Atomic $^{87}$Rb, $^{133}$Cs, and $^{169}$Tm
- URL: http://arxiv.org/abs/2409.08787v1
- Date: Fri, 13 Sep 2024 12:48:12 GMT
- Title: Variational Calculation of the Hyperfine Stark Effect in Atomic $^{87}$Rb, $^{133}$Cs, and $^{169}$Tm
- Authors: Timo Fleig,
- Abstract summary: An electronically variational approach to the calculation of atomic hyperfine structure transition energies is presented.
The method avoids the calculation of intermediate atomic states entirely and requires only the wavefunctions of the electronic states involved in the respective hyperfine levels.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An electronically variational approach to the calculation of atomic hyperfine structure transition energies under the influence of static external electric fields is presented. The method avoids the calculation of intermediate atomic states entirely and requires only the wavefunctions of the electronic states involved in the respective hyperfine levels. These wavefunctions are obtained through relativistic general-excitation-rank configuration interaction theory. The method also enables for calculations on atoms with the most complicated of shell structures. The initial applications include $^{87}$Rb and $^{133}$Cs where very good agreement of the approach with literature results is established. For $^{169}$Tm that is used in the development of atomic clocks the differential static electric dipole polarizability between ground levels $J=\frac{7}{2}$ and $J=\frac{5}{2}$ is calculated to be $\Delta\alpha = -0.23 \pm 0.11$ \au The hyperfine Stark coefficient for the hyperfine levels belonging to the ground term with $J=\frac{7}{2}$ is found to be $k = (1.3 \pm 1.0) \times 10^{-13}$ [Hz/((V/m)$^2$)]. This coefficient is several orders of magnitude smaller than the corresponding coefficients in $^{87}$Rb and $^{133}$Cs.
Related papers
- Analytical Correlation in the H$_{2}$ Molecule from the Independent Atom Ansatz [49.1574468325115]
The total energy functional correctly dissociates the H-H bond and yields absolute errors of 0.002 $rA$, 0.19 eV, and 13 cm-1$ relative to experiment at the tight binding computational cost.
The chemical bond formation is attributed to the Heitler-London resonance of quasi-orthogonal atomic states with no contributions from kinetic energy or charge accumulation in the bond.
arXiv Detail & Related papers (2024-05-20T21:21:42Z) - Aggregate Frequency Width, Nuclear Hyperfine Coupling and Jahn-Teller Effect of $Cu^{2+}$ Impurity Ion ESR in $SrLaAlO_4$ Dielectric Resonator at $20$ Millikelvin [0.0]
impurity paramagnetic ion, $Cu2+$ substitutes $Al$ in the $SrLaAlO_4$ single crystal lattice.
The anisotropy of the hyperfine structure reveals a characteristics of static Jahn-Teller effect.
arXiv Detail & Related papers (2024-03-24T22:40:36Z) - Calculations of the binding-energy differences for highly-charged Ho and
Dy ions [0.0]
The binding-energy differences for $163mathrmHoq+$ and $163mathrmDyq+$ ions with ionization degrees $q = 38$, $39$, and $40$ are calculated.
The calculations are performed using the large-scale relativistic configuration-interaction and relativistic coupled-clusters methods.
arXiv Detail & Related papers (2023-06-05T18:35:00Z) - On parametric resonance in the laser action [91.3755431537592]
We consider the selfconsistent semiclassical Maxwell--Schr"odinger system for the solid state laser.
We introduce the corresponding Poincar'e map $P$ and consider the differential $DP(Y0)$ at suitable stationary state $Y0$.
arXiv Detail & Related papers (2022-08-22T09:43:57Z) - Hyperfine Structure of $nP_{1/2}$ Rydberg States in $^{85}$Rb [0.0]
We measure the hyperfine structure of $nP_1/2$ Rydberg states using mm-wave spectroscopy on an ensemble of laser-cooled $85$Rb atoms.
arXiv Detail & Related papers (2022-07-18T13:20:17Z) - Laser Manipulation of Spin-Exchange Interaction Between Alkaline-Earth
Atoms in $^1$S$_0$ and $^3$P$_2$ States [14.119534067895096]
We show that due to the structure of alkaline-earth (like) atoms, the heating effects induced by the laser beams of our methods are very weak.
As a result, the Feshbach resonances, with which one can efficiently control the SEI by changing the laser intensity, may be induced by the laser beams with low-enough heating rate.
arXiv Detail & Related papers (2021-11-04T14:49:19Z) - Rovibrational structure of the Ytterbium monohydroxide molecule and the
$\mathcal{P}$,$\mathcal{T}$-violation searches [68.8204255655161]
The energy gap between levels of opposite parity, $l$-doubling, is of a great interest.
The influence of the bending and stretching modes on the sensitivities to the $mathcalP$,$mathcalT$-violation requires a thorough investigation.
arXiv Detail & Related papers (2021-08-25T20:12:31Z) - $\mathcal{P}$,$\mathcal{T}$-odd effects for RaOH molecule in the excited
vibrational state [77.34726150561087]
Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets.
We obtain the rovibrational wave functions of RaOH in the ground electronic state and excited vibrational state using the close-coupled equations derived from the adiabatic Hamiltonian.
arXiv Detail & Related papers (2020-12-15T17:08:33Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z) - Hyperfine and quadrupole interactions for Dy isotopes in DyPc$_2$
molecules [77.57930329012771]
Nuclear spin levels play an important role in understanding magnetization dynamics and implementation and control of quantum bits in lanthanide-based single-molecule magnets.
We investigate the hyperfine and nuclear quadrupole interactions for $161$Dy and $163$Dy nucleus in anionic DyPc$.
arXiv Detail & Related papers (2020-02-12T18:25:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.