AnyBipe: An End-to-End Framework for Training and Deploying Bipedal Robots Guided by Large Language Models
- URL: http://arxiv.org/abs/2409.08904v1
- Date: Fri, 13 Sep 2024 15:15:45 GMT
- Title: AnyBipe: An End-to-End Framework for Training and Deploying Bipedal Robots Guided by Large Language Models
- Authors: Yifei Yao, Wentao He, Chenyu Gu, Jiaheng Du, Fuwei Tan, Zhen Zhu, Junguo Lu,
- Abstract summary: This paper introduces an end-to-end framework for training and deploying reinforcement learning policies for robots.
The framework consists of three interconnected modules: an LLM-guided reward function design module, an RL training module leveraging prior work, and a sim-to-real homomorphic evaluation module.
We detail the construction of these modules, their advantages over traditional approaches, and demonstrate the framework's capability to autonomously develop and refine controlling strategies for bipedal robot locomotion.
- Score: 6.637952061378054
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training and deploying reinforcement learning (RL) policies for robots, especially in accomplishing specific tasks, presents substantial challenges. Recent advancements have explored diverse reward function designs, training techniques, simulation-to-reality (sim-to-real) transfers, and performance analysis methodologies, yet these still require significant human intervention. This paper introduces an end-to-end framework for training and deploying RL policies, guided by Large Language Models (LLMs), and evaluates its effectiveness on bipedal robots. The framework consists of three interconnected modules: an LLM-guided reward function design module, an RL training module leveraging prior work, and a sim-to-real homomorphic evaluation module. This design significantly reduces the need for human input by utilizing only essential simulation and deployment platforms, with the option to incorporate human-engineered strategies and historical data. We detail the construction of these modules, their advantages over traditional approaches, and demonstrate the framework's capability to autonomously develop and refine controlling strategies for bipedal robot locomotion, showcasing its potential to operate independently of human intervention.
Related papers
- Solving Multi-Goal Robotic Tasks with Decision Transformer [0.0]
We introduce a novel adaptation of the decision transformer architecture for offline multi-goal reinforcement learning in robotics.
Our approach integrates goal-specific information into the decision transformer, allowing it to handle complex tasks in an offline setting.
arXiv Detail & Related papers (2024-10-08T20:35:30Z) - Modular Neural Network Policies for Learning In-Flight Object Catching
with a Robot Hand-Arm System [55.94648383147838]
We present a modular framework designed to enable a robot hand-arm system to learn how to catch flying objects.
Our framework consists of five core modules: (i) an object state estimator that learns object trajectory prediction, (ii) a catching pose quality network that learns to score and rank object poses for catching, (iii) a reaching control policy trained to move the robot hand to pre-catch poses, and (iv) a grasping control policy trained to perform soft catching motions.
We conduct extensive evaluations of our framework in simulation for each module and the integrated system, to demonstrate high success rates of in-flight
arXiv Detail & Related papers (2023-12-21T16:20:12Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
We introduce RoboFuME, a reset-free fine-tuning system for robotic reinforcement learning.
Our insights are to utilize offline reinforcement learning techniques to ensure efficient online fine-tuning of a pre-trained policy.
Our method can incorporate data from an existing robot dataset and improve on a target task within as little as 3 hours of autonomous real-world experience.
arXiv Detail & Related papers (2023-10-23T17:50:08Z) - Reinforcement Learning with Human Feedback for Realistic Traffic
Simulation [53.85002640149283]
Key element of effective simulation is the incorporation of realistic traffic models that align with human knowledge.
This study identifies two main challenges: capturing the nuances of human preferences on realism and the unification of diverse traffic simulation models.
arXiv Detail & Related papers (2023-09-01T19:29:53Z) - PASTA: Pretrained Action-State Transformer Agents [10.654719072766495]
Self-supervised learning has brought about a revolutionary paradigm shift in various computing domains.
Recent approaches involve pre-training transformer models on vast amounts of unlabeled data.
In reinforcement learning, researchers have recently adapted these approaches, developing models pre-trained on expert trajectories.
arXiv Detail & Related papers (2023-07-20T15:09:06Z) - Model-Based Reinforcement Learning with Multi-Task Offline Pretraining [59.82457030180094]
We present a model-based RL method that learns to transfer potentially useful dynamics and action demonstrations from offline data to a novel task.
The main idea is to use the world models not only as simulators for behavior learning but also as tools to measure the task relevance.
We demonstrate the advantages of our approach compared with the state-of-the-art methods in Meta-World and DeepMind Control Suite.
arXiv Detail & Related papers (2023-06-06T02:24:41Z) - Training and Evaluation of Deep Policies using Reinforcement Learning
and Generative Models [67.78935378952146]
GenRL is a framework for solving sequential decision-making problems.
It exploits the combination of reinforcement learning and latent variable generative models.
We experimentally determine the characteristics of generative models that have most influence on the performance of the final policy training.
arXiv Detail & Related papers (2022-04-18T22:02:32Z) - Learning Multi-Objective Curricula for Deep Reinforcement Learning [55.27879754113767]
Various automatic curriculum learning (ACL) methods have been proposed to improve the sample efficiency and final performance of deep reinforcement learning (DRL)
In this paper, we propose a unified automatic curriculum learning framework to create multi-objective but coherent curricula.
In addition to existing hand-designed curricula paradigms, we further design a flexible memory mechanism to learn an abstract curriculum.
arXiv Detail & Related papers (2021-10-06T19:30:25Z) - Fast Online Adaptation in Robotics through Meta-Learning Embeddings of
Simulated Priors [3.4376560669160385]
In the real world, a robot might encounter any situation starting from motor failures to finding itself in a rocky terrain.
We show that FAMLE allows the robots to adapt to novel damages in significantly fewer time-steps than the baselines.
arXiv Detail & Related papers (2020-03-10T12:37:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.