Neural Message Passing Induced by Energy-Constrained Diffusion
- URL: http://arxiv.org/abs/2409.09111v1
- Date: Fri, 13 Sep 2024 17:54:41 GMT
- Title: Neural Message Passing Induced by Energy-Constrained Diffusion
- Authors: Qitian Wu, David Wipf, Junchi Yan,
- Abstract summary: We propose an energy-constrained diffusion model as a principled interpretable framework for understanding the mechanism of MPNNs.
We show that the new model can yield promising performance for cases where the data structures are observed (as a graph), partially observed or completely unobserved.
- Score: 79.9193447649011
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning representations for structured data with certain geometries (observed or unobserved) is a fundamental challenge, wherein message passing neural networks (MPNNs) have become a de facto class of model solutions. In this paper, we propose an energy-constrained diffusion model as a principled interpretable framework for understanding the mechanism of MPNNs and navigating novel architectural designs. The model, inspired by physical systems, combines the inductive bias of diffusion on manifolds with layer-wise constraints of energy minimization. As shown by our analysis, the diffusion operators have a one-to-one correspondence with the energy functions implicitly descended by the diffusion process, and the finite-difference iteration for solving the energy-constrained diffusion system induces the propagation layers of various types of MPNNs operated on observed or latent structures. On top of these findings, we devise a new class of neural message passing models, dubbed as diffusion-inspired Transformers, whose global attention layers are induced by the principled energy-constrained diffusion. Across diverse datasets ranging from real-world networks to images and physical particles, we show that the new model can yield promising performance for cases where the data structures are observed (as a graph), partially observed or completely unobserved.
Related papers
- Predicting Cascading Failures with a Hyperparametric Diffusion Model [66.89499978864741]
We study cascading failures in power grids through the lens of diffusion models.
Our model integrates viral diffusion principles with physics-based concepts.
We show that this diffusion model can be learned from traces of cascading failures.
arXiv Detail & Related papers (2024-06-12T02:34:24Z) - An Overview of Diffusion Models: Applications, Guided Generation, Statistical Rates and Optimization [59.63880337156392]
Diffusion models have achieved tremendous success in computer vision, audio, reinforcement learning, and computational biology.
Despite the significant empirical success, theory of diffusion models is very limited.
This paper provides a well-rounded theoretical exposure for stimulating forward-looking theories and methods of diffusion models.
arXiv Detail & Related papers (2024-04-11T14:07:25Z) - Graph Neural Aggregation-diffusion with Metastability [4.040326569845733]
Continuous graph neural models based on differential equations have expanded the architecture of graph neural networks (GNNs)
We propose GRADE inspired by graph aggregation-diffusion equations, which includes the delicate balance between nonlinear diffusion and aggregation induced by interaction potentials.
We prove that GRADE achieves competitive performance across various benchmarks and alleviates the over-smoothing issue in GNNs.
arXiv Detail & Related papers (2024-03-29T15:05:57Z) - Accelerating Inference in Molecular Diffusion Models with Latent Representations of Protein Structure [0.0]
Diffusion generative models operate directly on 3D molecular structures.
We present a novel GNN-based architecture for learning latent representations of molecular structure.
Our model achieves comparable performance to one with an all-atom protein representation while exhibiting a 3-fold reduction in inference time.
arXiv Detail & Related papers (2023-11-22T15:32:31Z) - DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
We introduce an energy constrained diffusion model which encodes a batch of instances from a dataset into evolutionary states.
We provide rigorous theory that implies closed-form optimal estimates for the pairwise diffusion strength among arbitrary instance pairs.
Experiments highlight the wide applicability of our model as a general-purpose encoder backbone with superior performance in various tasks.
arXiv Detail & Related papers (2023-01-23T15:18:54Z) - Unifying Diffusion Models' Latent Space, with Applications to
CycleDiffusion and Guidance [95.12230117950232]
We show that a common latent space emerges from two diffusion models trained independently on related domains.
Applying CycleDiffusion to text-to-image diffusion models, we show that large-scale text-to-image diffusion models can be used as zero-shot image-to-image editors.
arXiv Detail & Related papers (2022-10-11T15:53:52Z) - Diffusion Models in Vision: A Survey [80.82832715884597]
A diffusion model is a deep generative model that is based on two stages, a forward diffusion stage and a reverse diffusion stage.
Diffusion models are widely appreciated for the quality and diversity of the generated samples, despite their known computational burdens.
arXiv Detail & Related papers (2022-09-10T22:00:30Z) - WaveNet-Based Deep Neural Networks for the Characterization of Anomalous
Diffusion (WADNet) [0.0]
Anomalous diffusion is involved in the evolution of physical, chemical, biological, and economic systems.
This challenge aims at objectively assessing and comparing new approaches for single trajectory characterization.
We develop a WaveNet-based deep neural network (WADNet) by combining a modified WaveNet encoder with long short-term memory networks.
arXiv Detail & Related papers (2021-06-14T19:41:15Z) - Diffusion Mechanism in Residual Neural Network: Theory and Applications [12.573746641284849]
In many learning tasks with limited training samples, the diffusion connects the labeled and unlabeled data points.
We propose a novel diffusion residual network (Diff-ResNet) internally introduces diffusion into the architectures of neural networks.
Under the structured data assumption, it is proved that the proposed diffusion block can increase the distance-diameter ratio that improves the separability of inter-class points.
arXiv Detail & Related papers (2021-05-07T10:42:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.