Hierarchical Hypercomplex Network for Multimodal Emotion Recognition
- URL: http://arxiv.org/abs/2409.09194v2
- Date: Thu, 10 Oct 2024 15:35:49 GMT
- Title: Hierarchical Hypercomplex Network for Multimodal Emotion Recognition
- Authors: Eleonora Lopez, Aurelio Uncini, Danilo Comminiello,
- Abstract summary: We introduce a fully hypercomplex network with a hierarchical learning structure to fully capture correlations.
The proposed architecture surpasses state-of-the-art models on the MAHNOB-HCI dataset for emotion recognition.
- Score: 9.54382727022316
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Emotion recognition is relevant in various domains, ranging from healthcare to human-computer interaction. Physiological signals, being beyond voluntary control, offer reliable information for this purpose, unlike speech and facial expressions which can be controlled at will. They reflect genuine emotional responses, devoid of conscious manipulation, thereby enhancing the credibility of emotion recognition systems. Nonetheless, multimodal emotion recognition with deep learning models remains a relatively unexplored field. In this paper, we introduce a fully hypercomplex network with a hierarchical learning structure to fully capture correlations. Specifically, at the encoder level, the model learns intra-modal relations among the different channels of each input signal. Then, a hypercomplex fusion module learns inter-modal relations among the embeddings of the different modalities. The main novelty is in exploiting intra-modal relations by endowing the encoders with parameterized hypercomplex convolutions (PHCs) that thanks to hypercomplex algebra can capture inter-channel interactions within single modalities. Instead, the fusion module comprises parameterized hypercomplex multiplications (PHMs) that can model inter-modal correlations. The proposed architecture surpasses state-of-the-art models on the MAHNOB-HCI dataset for emotion recognition, specifically in classifying valence and arousal from electroencephalograms (EEGs) and peripheral physiological signals. The code of this study is available at https://github.com/ispamm/MHyEEG.
Related papers
- PHemoNet: A Multimodal Network for Physiological Signals [9.54382727022316]
We introduce PHemoNet, a fully hypercomplex network for multimodal emotion recognition from physiological signals.
The architecture comprises modality-specific encoders and a fusion module.
The proposed method outperforms current state-of-the-art models on the MAHNOB-HCI dataset.
arXiv Detail & Related papers (2024-09-13T21:14:27Z) - Inferring Relational Potentials in Interacting Systems [56.498417950856904]
We propose Neural Interaction Inference with Potentials (NIIP) as an alternative approach to discover such interactions.
NIIP assigns low energy to the subset of trajectories which respect the relational constraints observed.
It allows trajectory manipulation, such as interchanging interaction types across separately trained models, as well as trajectory forecasting.
arXiv Detail & Related papers (2023-10-23T00:44:17Z) - Hypercomplex Multimodal Emotion Recognition from EEG and Peripheral
Physiological Signals [7.293063257956068]
We propose a hypercomplex multimodal network equipped with a novel fusion module comprising parameterized hypercomplex multiplications.
We perform classification of valence and arousal from electroencephalogram (EEG) and peripheral physiological signals, employing the publicly available database MAHNOB-HCI.
arXiv Detail & Related papers (2023-10-11T16:45:44Z) - TACOformer:Token-channel compounded Cross Attention for Multimodal
Emotion Recognition [0.951828574518325]
We propose a comprehensive perspective of multimodal fusion that integrates channel-level and token-level cross-modal interactions.
Specifically, we introduce a unified cross attention module called Token-chAnnel COmpound (TACO) Cross Attention.
We also propose a 2D position encoding method to preserve information about the spatial distribution of EEG signal channels.
arXiv Detail & Related papers (2023-06-23T16:28:12Z) - EMERSK -- Explainable Multimodal Emotion Recognition with Situational
Knowledge [0.0]
We present Explainable Multimodal Emotion Recognition with Situational Knowledge (EMERSK)
EMERSK is a general system for human emotion recognition and explanation using visual information.
Our system can handle multiple modalities, including facial expressions, posture, and gait in a flexible and modular manner.
arXiv Detail & Related papers (2023-06-14T17:52:37Z) - EmotionIC: emotional inertia and contagion-driven dependency modeling for emotion recognition in conversation [34.24557248359872]
We propose an emotional inertia and contagion-driven dependency modeling approach (EmotionIC) for ERC task.
Our EmotionIC consists of three main components, i.e., Identity Masked Multi-Head Attention (IMMHA), Dialogue-based Gated Recurrent Unit (DiaGRU) and Skip-chain Conditional Random Field (SkipCRF)
Experimental results show that our method can significantly outperform the state-of-the-art models on four benchmark datasets.
arXiv Detail & Related papers (2023-03-20T13:58:35Z) - A Hierarchical Regression Chain Framework for Affective Vocal Burst
Recognition [72.36055502078193]
We propose a hierarchical framework, based on chain regression models, for affective recognition from vocal bursts.
To address the challenge of data sparsity, we also use self-supervised learning (SSL) representations with layer-wise and temporal aggregation modules.
The proposed systems participated in the ACII Affective Vocal Burst (A-VB) Challenge 2022 and ranked first in the "TWO'' and "CULTURE" tasks.
arXiv Detail & Related papers (2023-03-14T16:08:45Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
We propose a neural network-based emotion recognition framework that uses a late fusion of transfer-learned and fine-tuned models from speech and text modalities.
We evaluate the effectiveness of our proposed multimodal approach on the interactive emotional dyadic motion capture dataset.
arXiv Detail & Related papers (2022-02-16T00:23:42Z) - MMLatch: Bottom-up Top-down Fusion for Multimodal Sentiment Analysis [84.7287684402508]
Current deep learning approaches for multimodal fusion rely on bottom-up fusion of high and mid-level latent modality representations.
Models of human perception highlight the importance of top-down fusion, where high-level representations affect the way sensory inputs are perceived.
We propose a neural architecture that captures top-down cross-modal interactions, using a feedback mechanism in the forward pass during network training.
arXiv Detail & Related papers (2022-01-24T17:48:04Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
It is crucial that the machine should be able to recognize the emotional state of the user with high accuracy.
Deep neural networks have been used with great success in recognizing emotions.
We present a new model for continuous emotion recognition based on facial expression recognition.
arXiv Detail & Related papers (2020-01-31T17:47:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.