Active Learning to Guide Labeling Efforts for Question Difficulty Estimation
- URL: http://arxiv.org/abs/2409.09258v2
- Date: Thu, 10 Oct 2024 15:11:09 GMT
- Title: Active Learning to Guide Labeling Efforts for Question Difficulty Estimation
- Authors: Arthur Thuy, Ekaterina Loginova, Dries F. Benoit,
- Abstract summary: Transformer-based neural networks achieve state-of-the-art performance, primarily through supervised methods but with an isolated study in unsupervised learning.
This work bridges the research gap by exploring active learning for QDE, a supervised human-in-the-loop approach.
Experiments demonstrate that active learning with PowerVariance acquisition achieves a performance close to fully supervised models after labeling only 10% of the training data.
- Score: 1.0514231683620516
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, there has been a surge in research on Question Difficulty Estimation (QDE) using natural language processing techniques. Transformer-based neural networks achieve state-of-the-art performance, primarily through supervised methods but with an isolated study in unsupervised learning. While supervised methods focus on predictive performance, they require abundant labeled data. On the other hand, unsupervised methods do not require labeled data but rely on a different evaluation metric that is also computationally expensive in practice. This work bridges the research gap by exploring active learning for QDE, a supervised human-in-the-loop approach striving to minimize the labeling efforts while matching the performance of state-of-the-art models. The active learning process iteratively trains on a labeled subset, acquiring labels from human experts only for the most informative unlabeled data points. Furthermore, we propose a novel acquisition function PowerVariance to add the most informative samples to the labeled set, a regression extension to the PowerBALD function popular in classification. We employ DistilBERT for QDE and identify informative samples by applying Monte Carlo dropout to capture epistemic uncertainty in unlabeled samples. The experiments demonstrate that active learning with PowerVariance acquisition achieves a performance close to fully supervised models after labeling only 10% of the training data. The proposed methodology promotes the responsible use of educational resources, makes QDE tools more accessible to course instructors, and is promising for other applications such as personalized support systems and question-answering tools.
Related papers
- BoostAdapter: Improving Vision-Language Test-Time Adaptation via Regional Bootstrapping [64.8477128397529]
We propose a training-required and training-free test-time adaptation framework.
We maintain a light-weight key-value memory for feature retrieval from instance-agnostic historical samples and instance-aware boosting samples.
We theoretically justify the rationality behind our method and empirically verify its effectiveness on both the out-of-distribution and the cross-domain datasets.
arXiv Detail & Related papers (2024-10-20T15:58:43Z) - Robust online active learning [0.7734726150561089]
This work investigates the performance of online active linear regression in contaminated data streams.
We propose a solution that bounds the search area of a conditional D-optimal algorithm and uses a robust estimator.
arXiv Detail & Related papers (2023-02-01T13:14:26Z) - Temporal Output Discrepancy for Loss Estimation-based Active Learning [65.93767110342502]
We present a novel deep active learning approach that queries the oracle for data annotation when the unlabeled sample is believed to incorporate high loss.
Our approach achieves superior performances than the state-of-the-art active learning methods on image classification and semantic segmentation tasks.
arXiv Detail & Related papers (2022-12-20T19:29:37Z) - Responsible Active Learning via Human-in-the-loop Peer Study [88.01358655203441]
We propose a responsible active learning method, namely Peer Study Learning (PSL), to simultaneously preserve data privacy and improve model stability.
We first introduce a human-in-the-loop teacher-student architecture to isolate unlabelled data from the task learner (teacher) on the cloud-side.
During training, the task learner instructs the light-weight active learner which then provides feedback on the active sampling criterion.
arXiv Detail & Related papers (2022-11-24T13:18:27Z) - ALLSH: Active Learning Guided by Local Sensitivity and Hardness [98.61023158378407]
We propose to retrieve unlabeled samples with a local sensitivity and hardness-aware acquisition function.
Our method achieves consistent gains over the commonly used active learning strategies in various classification tasks.
arXiv Detail & Related papers (2022-05-10T15:39:11Z) - SURF: Semi-supervised Reward Learning with Data Augmentation for
Feedback-efficient Preference-based Reinforcement Learning [168.89470249446023]
We present SURF, a semi-supervised reward learning framework that utilizes a large amount of unlabeled samples with data augmentation.
In order to leverage unlabeled samples for reward learning, we infer pseudo-labels of the unlabeled samples based on the confidence of the preference predictor.
Our experiments demonstrate that our approach significantly improves the feedback-efficiency of the preference-based method on a variety of locomotion and robotic manipulation tasks.
arXiv Detail & Related papers (2022-03-18T16:50:38Z) - Ask-n-Learn: Active Learning via Reliable Gradient Representations for
Image Classification [29.43017692274488]
Deep predictive models rely on human supervision in the form of labeled training data.
We propose Ask-n-Learn, an active learning approach based on gradient embeddings obtained using the pesudo-labels estimated in each of the algorithm.
arXiv Detail & Related papers (2020-09-30T05:19:56Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z) - Active and Incremental Learning with Weak Supervision [7.2288756536476635]
In this work, we describe combinations of an incremental learning scheme and methods of active learning.
An object detection task is evaluated in a continuous exploration context on the PASCAL VOC dataset.
We also validate a weakly supervised system based on active and incremental learning in a real-world biodiversity application.
arXiv Detail & Related papers (2020-01-20T13:21:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.