Evaluating probabilistic and data-driven inference models for fiber-coupled NV-diamond temperature sensors
- URL: http://arxiv.org/abs/2409.09487v1
- Date: Sat, 14 Sep 2024 17:23:20 GMT
- Title: Evaluating probabilistic and data-driven inference models for fiber-coupled NV-diamond temperature sensors
- Authors: Shraddha Rajpal, Zeeshan Ahmed, Tyrus Berry,
- Abstract summary: We evaluate the impact of inference model on uncertainties when using continuous wave Optically Detected Magnetic Resonance (ODMR) measurements to infer temperature.
This model effectively utilizes the temperature dependence of spin Hamiltonian parameters to infer temperature from spectral features in the ODMR data.
- Score: 0.7140163200313723
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We evaluate the impact of inference model on uncertainties when using continuous wave Optically Detected Magnetic Resonance (ODMR) measurements to infer temperature. Our approach leverages a probabilistic feedforward inference model designed to maximize the likelihood of observed ODMR spectra through automatic differentiation. This model effectively utilizes the temperature dependence of spin Hamiltonian parameters to infer temperature from spectral features in the ODMR data. We achieve prediction uncertainty of $\pm$ 1 K across a temperature range of 243 K to 323 K. To benchmark our probabilistic model, we compare it with a non-parametric peak-finding technique and data-driven methodologies such as Principal Component Regression (PCR) and a 1D Convolutional Neural Network (CNN). We find that when validated against out-of-sample dataset that encompasses the same temperature range as the training dataset, data driven methods can show uncertainties that are as much as 0.67 K lower without incorporating expert-level understanding of the spectroscopic-temperature relationship. However, our results show that the probabilistic model outperforms both PCR and CNN when tasked with extrapolating beyond the temperature range used in training set, indicating robustness and generalizability. In contrast, data-driven methods like PCR and CNN demonstrate up to ten times worse uncertainties when tasked with extrapolating outside their training data range.
Related papers
- A model learning framework for inferring the dynamics of transmission rate depending on exogenous variables for epidemic forecasts [3.3385430106181184]
We formalize a novel scientific machine learning framework to reconstruct the hidden dynamics of the transmission rate.
We validate this original approach using both a synthetic test case and a realistic test case based on meteorological data (temperature and humidity) and influenza data from Italy between 2010 and 2020.
arXiv Detail & Related papers (2024-10-15T12:24:55Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Spatially-resolved Thermometry from Line-of-Sight Emission Spectroscopy
via Machine Learning [2.449329947677678]
The aim of this research is to explore the use of data-driven models in measuring temperature distributions.
Two categories of data-driven methods are analyzed: (i) Feature engineering and classical machine learning algorithms, and (ii) end-to-end convolutional neural networks (CNN)
The proposed method is capable of measuring nonuniform temperature distributions from low-resolution spectra, even when the species concentration distribution in the gas mixtures is unknown.
arXiv Detail & Related papers (2022-12-15T13:46:15Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Learning to discover: expressive Gaussian mixture models for
multi-dimensional simulation and parameter inference in the physical sciences [0.0]
We show that density models describing multiple observables may be created using an auto-regressive Gaussian mixture model.
The model is designed to capture how observable spectra are deformed by hypothesis variations.
It may be used as a statistical model for scientific discovery in interpreting experimental observations.
arXiv Detail & Related papers (2021-08-25T21:27:29Z) - Machine classification for probe based quantum thermometry [0.0]
We consider probe-based quantum thermometry and show that machine classification can provide model-independent estimation.
Our approach is based on the k-nearest-neighbor algorithm.
arXiv Detail & Related papers (2021-07-09T17:16:27Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Adiabatic Sensing Technique for Optimal Temperature Estimation using
Trapped Ions [64.31011847952006]
We propose an adiabatic method for optimal phonon temperature estimation using trapped ions.
The relevant information of the phonon thermal distributions can be transferred to the collective spin-degree of freedom.
We show that each of the thermal state probabilities is adiabatically mapped onto the respective collective spin-excitation configuration.
arXiv Detail & Related papers (2020-12-16T12:58:08Z) - Score-Based Generative Modeling through Stochastic Differential
Equations [114.39209003111723]
We present a differential equation that transforms a complex data distribution to a known prior distribution by injecting noise.
A corresponding reverse-time SDE transforms the prior distribution back into the data distribution by slowly removing the noise.
By leveraging advances in score-based generative modeling, we can accurately estimate these scores with neural networks.
We demonstrate high fidelity generation of 1024 x 1024 images for the first time from a score-based generative model.
arXiv Detail & Related papers (2020-11-26T19:39:10Z) - Real-time parameter inference in reduced-order flame models with
heteroscedastic Bayesian neural network ensembles [1.7188280334580197]
We train our networks on a library of 2.1 million simulated flame videos.
The trained neural networks are then used to infer model parameters from real videos of a premixed Bunsen flame.
arXiv Detail & Related papers (2020-10-11T15:04:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.