Learning Transferable Features for Implicit Neural Representations
- URL: http://arxiv.org/abs/2409.09566v1
- Date: Sun, 15 Sep 2024 00:53:44 GMT
- Title: Learning Transferable Features for Implicit Neural Representations
- Authors: Kushal Vyas, Ahmed Imtiaz Humayun, Aniket Dashpute, Richard G. Baraniuk, Ashok Veeraraghavan, Guha Balakrishnan,
- Abstract summary: Implicit neural representations (INRs) have demonstrated success in a variety of applications, including inverse problems and neural rendering.
We introduce a new INR training framework, STRAINER, that learns transferrable features for fitting INRs to new signals.
We evaluate STRAINER on multiple in-domain and out-of-domain signal fitting tasks and inverse problems.
- Score: 37.12083836826336
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Implicit neural representations (INRs) have demonstrated success in a variety of applications, including inverse problems and neural rendering. An INR is typically trained to capture one signal of interest, resulting in learned neural features that are highly attuned to that signal. Assumed to be less generalizable, we explore the aspect of transferability of such learned neural features for fitting similar signals. We introduce a new INR training framework, STRAINER that learns transferrable features for fitting INRs to new signals from a given distribution, faster and with better reconstruction quality. Owing to the sequential layer-wise affine operations in an INR, we propose to learn transferable representations by sharing initial encoder layers across multiple INRs with independent decoder layers. At test time, the learned encoder representations are transferred as initialization for an otherwise randomly initialized INR. We find STRAINER to yield extremely powerful initialization for fitting images from the same domain and allow for $\approx +10dB$ gain in signal quality early on compared to an untrained INR itself. STRAINER also provides a simple way to encode data-driven priors in INRs. We evaluate STRAINER on multiple in-domain and out-of-domain signal fitting tasks and inverse problems and further provide detailed analysis and discussion on the transferability of STRAINER's features. Our demo can be accessed at https://colab.research.google.com/drive/1fBZAwqE8C_lrRPAe-hQZJTWrMJuAKtG2?usp=sharing .
Related papers
- Single-Layer Learnable Activation for Implicit Neural Representation (SL$^{2}$A-INR) [6.572456394600755]
Implicit Representation (INR) leveraging a neural network to transform coordinate input into corresponding attributes has driven significant advances in vision-related domains.
We propose SL$2$A-INR with a single-layer learnable activation function, prompting the effectiveness of traditional ReLU-baseds.
Our method performs superior across diverse tasks, including image representation, 3D shape reconstruction, single image super-resolution, CT reconstruction, and novel view.
arXiv Detail & Related papers (2024-09-17T02:02:15Z) - ReLUs Are Sufficient for Learning Implicit Neural Representations [17.786058035763254]
We revisit the use of ReLU activation functions for learning implicit neural representations.
Inspired by second order B-spline wavelets, we incorporate a set of simple constraints to the ReLU neurons in each layer of a deep neural network (DNN)
We demonstrate that, contrary to popular belief, one can learn state-of-the-art INRs based on a DNN composed of only ReLU neurons.
arXiv Detail & Related papers (2024-06-04T17:51:08Z) - Locality-Aware Generalizable Implicit Neural Representation [54.93702310461174]
Generalizable implicit neural representation (INR) enables a single continuous function to represent multiple data instances.
We propose a novel framework for generalizable INR that combines a transformer encoder with a locality-aware INR decoder.
Our framework significantly outperforms previous generalizable INRs and validates the usefulness of the locality-aware latents for downstream tasks.
arXiv Detail & Related papers (2023-10-09T11:26:58Z) - DINER: Disorder-Invariant Implicit Neural Representation [33.10256713209207]
Implicit neural representation (INR) characterizes the attributes of a signal as a function of corresponding coordinates.
We propose the disorder-invariant implicit neural representation (DINER) by augmenting a hash-table to a traditional INR backbone.
arXiv Detail & Related papers (2022-11-15T03:34:24Z) - Signal Processing for Implicit Neural Representations [80.38097216996164]
Implicit Neural Representations (INRs) encode continuous multi-media data via multi-layer perceptrons.
Existing works manipulate such continuous representations via processing on their discretized instance.
We propose an implicit neural signal processing network, dubbed INSP-Net, via differential operators on INR.
arXiv Detail & Related papers (2022-10-17T06:29:07Z) - Neural Implicit Dictionary via Mixture-of-Expert Training [111.08941206369508]
We present a generic INR framework that achieves both data and training efficiency by learning a Neural Implicit Dictionary (NID)
Our NID assembles a group of coordinate-based Impworks which are tuned to span the desired function space.
Our experiments show that, NID can improve reconstruction of 2D images or 3D scenes by 2 orders of magnitude faster with up to 98% less input data.
arXiv Detail & Related papers (2022-07-08T05:07:19Z) - Over-and-Under Complete Convolutional RNN for MRI Reconstruction [57.95363471940937]
Recent deep learning-based methods for MR image reconstruction usually leverage a generic auto-encoder architecture.
We propose an Over-and-Under Complete Convolu?tional Recurrent Neural Network (OUCR), which consists of an overcomplete and an undercomplete Convolutional Recurrent Neural Network(CRNN)
The proposed method achieves significant improvements over the compressed sensing and popular deep learning-based methods with less number of trainable parameters.
arXiv Detail & Related papers (2021-06-16T15:56:34Z) - Deep Networks for Direction-of-Arrival Estimation in Low SNR [89.45026632977456]
We introduce a Convolutional Neural Network (CNN) that is trained from mutli-channel data of the true array manifold matrix.
We train a CNN in the low-SNR regime to predict DoAs across all SNRs.
Our robust solution can be applied in several fields, ranging from wireless array sensors to acoustic microphones or sonars.
arXiv Detail & Related papers (2020-11-17T12:52:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.