Stutter-Solver: End-to-end Multi-lingual Dysfluency Detection
- URL: http://arxiv.org/abs/2409.09621v1
- Date: Sun, 15 Sep 2024 06:11:00 GMT
- Title: Stutter-Solver: End-to-end Multi-lingual Dysfluency Detection
- Authors: Xuanru Zhou, Cheol Jun Cho, Ayati Sharma, Brittany Morin, David Baquirin, Jet Vonk, Zoe Ezzes, Zachary Miller, Boon Lead Tee, Maria Luisa Gorno Tempini, Jiachen Lian, Gopala Anumanchipalli,
- Abstract summary: Stutter-r: an end-to-end framework that detects dysfluency with accurate type and time transcription.
VCTK-Pro, VCTK-Art, and AISHELL3-Pro, simulating natural spoken dysfluencies.
Our approach achieves state-of-the-art performance on all available dysfluency corpora.
- Score: 4.126904442587873
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current de-facto dysfluency modeling methods utilize template matching algorithms which are not generalizable to out-of-domain real-world dysfluencies across languages, and are not scalable with increasing amounts of training data. To handle these problems, we propose Stutter-Solver: an end-to-end framework that detects dysfluency with accurate type and time transcription, inspired by the YOLO object detection algorithm. Stutter-Solver can handle co-dysfluencies and is a natural multi-lingual dysfluency detector. To leverage scalability and boost performance, we also introduce three novel dysfluency corpora: VCTK-Pro, VCTK-Art, and AISHELL3-Pro, simulating natural spoken dysfluencies including repetition, block, missing, replacement, and prolongation through articulatory-encodec and TTS-based methods. Our approach achieves state-of-the-art performance on all available dysfluency corpora. Code and datasets are open-sourced at https://github.com/eureka235/Stutter-Solver
Related papers
- Seamless Dysfluent Speech Text Alignment for Disordered Speech Analysis [8.5693791544413]
We propose Neural LCS, a novel approach for dysfluent text-text and speech-text alignment.<n>We evaluate our method on a large-scale simulated dataset.<n>Our results demonstrate the potential of Neural LCS to enhance automated systems for diagnosing and analyzing speech disorders.
arXiv Detail & Related papers (2025-06-05T03:06:37Z) - Analysis and Evaluation of Synthetic Data Generation in Speech Dysfluency Detection [5.95376852691752]
Speech dysfluency detection is crucial for clinical diagnosis and language assessment.<n>This dataset captures 11 dysfluency categories spanning both word and phoneme levels.<n>Building upon this resource, we improve an end-to-end dysfluency detection framework.
arXiv Detail & Related papers (2025-05-28T06:52:10Z) - Dysfluent WFST: A Framework for Zero-Shot Speech Dysfluency Transcription and Detection [5.512072120303165]
Dysfluent-WFST is a zero-shot decoder that simultaneously transcribes phonemes and detects dysfluency.<n>It achieves state-of-the-art performance in both phonetic error rate and dysfluency detection on simulated and real speech data.
arXiv Detail & Related papers (2025-05-22T08:02:50Z) - Fast Controlled Generation from Language Models with Adaptive Weighted Rejection Sampling [90.86991492288487]
evaluating constraint on every token can be prohibitively expensive.
LCD can distort the global distribution over strings, sampling tokens based only on local information.
We show that our approach is superior to state-of-the-art baselines.
arXiv Detail & Related papers (2025-04-07T18:30:18Z) - Detecting Machine-Generated Long-Form Content with Latent-Space Variables [54.07946647012579]
Existing zero-shot detectors primarily focus on token-level distributions, which are vulnerable to real-world domain shifts.
We propose a more robust method that incorporates abstract elements, such as event transitions, as key deciding factors to detect machine versus human texts.
arXiv Detail & Related papers (2024-10-04T18:42:09Z) - YOLO-Stutter: End-to-end Region-Wise Speech Dysfluency Detection [5.42845980208244]
YOLO-Stutter is a first end-to-end method that detects dysfluencies in a time-accurate manner.
VCTK-Stutter and VCTK-TTS simulate natural spoken dysfluencies including repetition, block, missing, replacement, and prolongation.
arXiv Detail & Related papers (2024-08-27T11:31:12Z) - OV-DINO: Unified Open-Vocabulary Detection with Language-Aware Selective Fusion [88.59397418187226]
We propose a novel unified open-vocabulary detection method called OV-DINO.
It is pre-trained on diverse large-scale datasets with language-aware selective fusion in a unified framework.
We evaluate the performance of the proposed OV-DINO on popular open-vocabulary detection benchmarks.
arXiv Detail & Related papers (2024-07-10T17:05:49Z) - Large Language Models for Dysfluency Detection in Stuttered Speech [16.812800649507302]
Accurately detecting dysfluencies in spoken language can help to improve the performance of automatic speech and language processing components.
Inspired by the recent trend towards the deployment of large language models (LLMs) as universal learners and processors of non-lexical inputs, we approach the task of multi-label dysfluency detection as a language modeling problem.
We present hypotheses candidates generated with an automatic speech recognition system and acoustic representations extracted from an audio encoder model to an LLM, and finetune the system to predict dysfluency labels on three datasets containing English and German stuttered speech.
arXiv Detail & Related papers (2024-06-16T17:51:22Z) - Language Rectified Flow: Advancing Diffusion Language Generation with Probabilistic Flows [53.31856123113228]
This paper proposes Language Rectified Flow (ours)
Our method is based on the reformulation of the standard probabilistic flow models.
Experiments and ablation studies demonstrate that our method can be general, effective, and beneficial for many NLP tasks.
arXiv Detail & Related papers (2024-03-25T17:58:22Z) - Automatic Disfluency Detection from Untranscribed Speech [25.534535098405602]
Stuttering is a speech disorder characterized by a high rate of disfluencies.
automatic disfluency detection may help in treatment planning for individuals who stutter.
We investigate language, acoustic, and multimodal methods for frame-level automatic disfluency detection and categorization.
arXiv Detail & Related papers (2023-11-01T21:36:39Z) - A Cheaper and Better Diffusion Language Model with Soft-Masked Noise [62.719656543880596]
Masked-Diffuse LM is a novel diffusion model for language modeling, inspired by linguistic features in languages.
Specifically, we design a linguistic-informed forward process which adds corruptions to the text through strategically soft-masking to better noise the textual data.
We demonstrate that our Masked-Diffuse LM can achieve better generation quality than the state-of-the-art diffusion models with better efficiency.
arXiv Detail & Related papers (2023-04-10T17:58:42Z) - Lexically Aware Semi-Supervised Learning for OCR Post-Correction [90.54336622024299]
Much of the existing linguistic data in many languages of the world is locked away in non-digitized books and documents.
Previous work has demonstrated the utility of neural post-correction methods on recognition of less-well-resourced languages.
We present a semi-supervised learning method that makes it possible to utilize raw images to improve performance.
arXiv Detail & Related papers (2021-11-04T04:39:02Z) - FluentNet: End-to-End Detection of Speech Disfluency with Deep Learning [23.13972240042859]
We propose an end-to-end deep neural network, FluentNet, capable of detecting a number of different disfluency types.
FluentNet consists of a Squeeze-and-Excitation Residual convolutional neural network which facilitate the learning of strong spectral frame-level representations.
We present a disfluency dataset based on the public LibriSpeech dataset with synthesized stutters.
arXiv Detail & Related papers (2020-09-23T21:51:29Z) - Inducing Language-Agnostic Multilingual Representations [61.97381112847459]
Cross-lingual representations have the potential to make NLP techniques available to the vast majority of languages in the world.
We examine three approaches for this: (i) re-aligning the vector spaces of target languages to a pivot source language; (ii) removing language-specific means and variances, which yields better discriminativeness of embeddings as a by-product; and (iii) increasing input similarity across languages by removing morphological contractions and sentence reordering.
arXiv Detail & Related papers (2020-08-20T17:58:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.