KAN v.s. MLP for Offline Reinforcement Learning
- URL: http://arxiv.org/abs/2409.09653v1
- Date: Sun, 15 Sep 2024 07:52:44 GMT
- Title: KAN v.s. MLP for Offline Reinforcement Learning
- Authors: Haihong Guo, Fengxin Li, Jiao Li, Hongyan Liu,
- Abstract summary: Kolmogorov-Arnold Networks (KAN) is an emerging neural network architecture in machine learning.
In this paper, we explore the incorporation of KAN into the actor and critic networks for offline reinforcement learning.
- Score: 4.3621896506713185
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Kolmogorov-Arnold Networks (KAN) is an emerging neural network architecture in machine learning. It has greatly interested the research community about whether KAN can be a promising alternative of the commonly used Multi-Layer Perceptions (MLP). Experiments in various fields demonstrated that KAN-based machine learning can achieve comparable if not better performance than MLP-based methods, but with much smaller parameter scales and are more explainable. In this paper, we explore the incorporation of KAN into the actor and critic networks for offline reinforcement learning (RL). We evaluated the performance, parameter scales, and training efficiency of various KAN and MLP based conservative Q-learning (CQL) on the the classical D4RL benchmark for offline RL. Our study demonstrates that KAN can achieve performance close to the commonly used MLP with significantly fewer parameters. This provides us an option to choose the base networks according to the requirements of the offline RL tasks.
Related papers
- On the expressiveness and spectral bias of KANs [17.42614039265962]
KANs were recently proposed as a potential alternative to the prevalent architectural backbone of many deep learning models, the multi-layer perceptron (MLP)
KANs have seen success in various tasks of AI for science, with their empirical efficiency and accuracy demostrated in function regression, PDE solving, and many more scientific problems.
arXiv Detail & Related papers (2024-10-02T17:57:38Z) - A preliminary study on continual learning in computer vision using Kolmogorov-Arnold Networks [43.70716358136333]
Kolmogorov- Networks (KAN) are based on a fundamentally different mathematical framework.
KANs address several major issues insio, such as forgetting in continual learning scenarios.
We extend the investigation by evaluating the performance of KANs in continual learning tasks within computer vision.
arXiv Detail & Related papers (2024-09-20T14:49:21Z) - Activation Space Selectable Kolmogorov-Arnold Networks [29.450377034478933]
Kolmogorov-Arnold Network (KAN), based on nonlinear additive connections, has been proven to achieve performance comparable to Select-based methods.
Despite this potential, the use of a single activation function space results in reduced performance of KAN and related works across different tasks.
This work contributes to the understanding of the data-centric design of new AI and provides a foundational reference for innovations in KAN-based network architectures.
arXiv Detail & Related papers (2024-08-15T11:34:05Z) - Kolmogorov-Arnold Network for Online Reinforcement Learning [0.22615818641180724]
Kolmogorov-Arnold Networks (KANs) have shown potential as an alternative to Multi-Layer Perceptrons (MLPs) in neural networks.
KANs provide universal function approximation with fewer parameters and reduced memory usage.
arXiv Detail & Related papers (2024-08-09T03:32:37Z) - Efficient Recurrent Off-Policy RL Requires a Context-Encoder-Specific Learning Rate [4.6659670917171825]
Recurrent reinforcement learning (RL) consists of a context encoder based on recurrent neural networks (RNNs) for unobservable state prediction.
Previous RL methods face training stability issues due to the gradient instability of RNNs.
We propose Recurrent Off-policy RL with Context-Encoder-Specific Learning Rate (RESeL) to tackle this issue.
arXiv Detail & Related papers (2024-05-24T09:33:47Z) - Parameter and Computation Efficient Transfer Learning for
Vision-Language Pre-trained Models [79.34513906324727]
In this paper, we aim at parameter and efficient transfer learning (PCETL) for vision-language pre-trained models.
We propose a novel dynamic architecture skipping (DAS) approach towards effective PCETL.
arXiv Detail & Related papers (2023-09-04T09:34:33Z) - Optimal Goal-Reaching Reinforcement Learning via Quasimetric Learning [73.80728148866906]
Quasimetric Reinforcement Learning (QRL) is a new RL method that utilizes quasimetric models to learn optimal value functions.
On offline and online goal-reaching benchmarks, QRL also demonstrates improved sample efficiency and performance.
arXiv Detail & Related papers (2023-04-03T17:59:58Z) - Contrastive UCB: Provably Efficient Contrastive Self-Supervised Learning in Online Reinforcement Learning [92.18524491615548]
Contrastive self-supervised learning has been successfully integrated into the practice of (deep) reinforcement learning (RL)
We study how RL can be empowered by contrastive learning in a class of Markov decision processes (MDPs) and Markov games (MGs) with low-rank transitions.
Under the online setting, we propose novel upper confidence bound (UCB)-type algorithms that incorporate such a contrastive loss with online RL algorithms for MDPs or MGs.
arXiv Detail & Related papers (2022-07-29T17:29:08Z) - Learning to Prune Deep Neural Networks via Reinforcement Learning [64.85939668308966]
PuRL is a deep reinforcement learning based algorithm for pruning neural networks.
It achieves sparsity and accuracy comparable to current state-of-the-art methods.
arXiv Detail & Related papers (2020-07-09T13:06:07Z) - MOReL : Model-Based Offline Reinforcement Learning [49.30091375141527]
In offline reinforcement learning (RL), the goal is to learn a highly rewarding policy based solely on a dataset of historical interactions with the environment.
We present MOReL, an algorithmic framework for model-based offline RL.
We show that MOReL matches or exceeds state-of-the-art results in widely studied offline RL benchmarks.
arXiv Detail & Related papers (2020-05-12T17:52:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.