Econometric Inference for High Dimensional Predictive Regressions
- URL: http://arxiv.org/abs/2409.10030v2
- Date: Sat, 09 Nov 2024 15:23:48 GMT
- Title: Econometric Inference for High Dimensional Predictive Regressions
- Authors: Zhan Gao, Ji Hyung Lee, Ziwei Mei, Zhentao Shi,
- Abstract summary: We propose a novel estimator called IVX-desparsified LASSO (XDlasso)
XDlasso eliminates the shrinkage bias simultaneously.
We investigate the predictability of the U.S. stock returns based on the earnings-price ratio, and the predictability of the U.S. inflation using the unemployment rate.
- Score: 4.658398919599387
- License:
- Abstract: LASSO introduces shrinkage bias into estimated coefficients, which can adversely affect the desirable asymptotic normality and invalidate the standard inferential procedure based on the $t$-statistic. The desparsified LASSO has emerged as a well-known remedy for this issue. In the context of high dimensional predictive regression, the desparsified LASSO faces an additional challenge: the Stambaugh bias arising from nonstationary regressors. To restore the standard inferential procedure, we propose a novel estimator called IVX-desparsified LASSO (XDlasso). XDlasso eliminates the shrinkage bias and the Stambaugh bias simultaneously and does not require prior knowledge about the identities of nonstationary and stationary regressors. We establish the asymptotic properties of XDlasso for hypothesis testing, and our theoretical findings are supported by Monte Carlo simulations. Applying our method to real-world applications from the FRED-MD database -- which includes a rich set of control variables -- we investigate two important empirical questions: (i) the predictability of the U.S. stock returns based on the earnings-price ratio, and (ii) the predictability of the U.S. inflation using the unemployment rate.
Related papers
- Distributionally Robust Instrumental Variables Estimation [10.765695227417865]
We propose a distributionally robust framework for instrumental variables (IV) estimation.
We show that Wasserstein DRIVE could be preferable in practice, particularly when the practitioner is uncertain about model assumptions or distributional shifts in data.
arXiv Detail & Related papers (2024-10-21T04:33:38Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
We consider the problem of quantifying uncertainty over expected cumulative rewards in model-based reinforcement learning.
We propose a new uncertainty Bellman equation (UBE) whose solution converges to the true posterior variance over values.
We introduce a general-purpose policy optimization algorithm, Q-Uncertainty Soft Actor-Critic (QU-SAC) that can be applied for either risk-seeking or risk-averse policy optimization.
arXiv Detail & Related papers (2023-12-07T15:55:58Z) - Regression with Cost-based Rejection [30.43900105405108]
We investigate a novel regression problem where the model can reject to make predictions on some examples given certain rejection costs.
We derive the Bayes optimal solution, which shows that the optimal model should reject to make predictions on the examples whose variance is larger than the rejection cost.
arXiv Detail & Related papers (2023-11-08T09:33:21Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - Quantifying predictive uncertainty of aphasia severity in stroke patients with sparse heteroscedastic Bayesian high-dimensional regression [47.1405366895538]
Sparse linear regression methods for high-dimensional data commonly assume that residuals have constant variance, which can be violated in practice.
This paper proposes estimating high-dimensional heteroscedastic linear regression models using a heteroscedastic partitioned empirical Bayes Expectation Conditional Maximization algorithm.
arXiv Detail & Related papers (2023-09-15T22:06:29Z) - A Robustness Analysis of Blind Source Separation [91.3755431537592]
Blind source separation (BSS) aims to recover an unobserved signal from its mixture $X=f(S)$ under the condition that the transformation $f$ is invertible but unknown.
We present a general framework for analysing such violations and quantifying their impact on the blind recovery of $S$ from $X$.
We show that a generic BSS-solution in response to general deviations from its defining structural assumptions can be profitably analysed in the form of explicit continuity guarantees.
arXiv Detail & Related papers (2023-03-17T16:30:51Z) - On LASSO for High Dimensional Predictive Regression [0.0]
This paper examines LASSO, a widely-used $L_1$-penalized regression method, in high dimensional linear predictive regressions.
The consistency of LASSO is contingent upon two key components: the deviation bound of the cross product of the regressors and the error term.
Using machine learning and macroeconomic domain expertise, LASSO demonstrates strong performance in forecasting the unemployment rate.
arXiv Detail & Related papers (2022-12-14T06:14:58Z) - Learning Probabilistic Ordinal Embeddings for Uncertainty-Aware
Regression [91.3373131262391]
Uncertainty is the only certainty there is.
Traditionally, the direct regression formulation is considered and the uncertainty is modeled by modifying the output space to a certain family of probabilistic distributions.
How to model the uncertainty within the present-day technologies for regression remains an open issue.
arXiv Detail & Related papers (2021-03-25T06:56:09Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
We develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously.
STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations.
We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic.
arXiv Detail & Related papers (2020-12-08T21:21:47Z) - On Low-rank Trace Regression under General Sampling Distribution [9.699586426043885]
We show that cross-validated estimators satisfy near-optimal error bounds on general assumptions.
We also show that the cross-validated estimator outperforms the theory-inspired approach of selecting the parameter.
arXiv Detail & Related papers (2019-04-18T02:56:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.