Data-Centric Strategies for Overcoming PET/CT Heterogeneity: Insights from the AutoPET III Lesion Segmentation Challenge
- URL: http://arxiv.org/abs/2409.10120v1
- Date: Mon, 16 Sep 2024 09:32:04 GMT
- Title: Data-Centric Strategies for Overcoming PET/CT Heterogeneity: Insights from the AutoPET III Lesion Segmentation Challenge
- Authors: Balint Kovacs, Shuhan Xiao, Maximilian Rokuss, Constantin Ulrich, Fabian Isensee, Klaus H. Maier-Hein,
- Abstract summary: The third autoPET challenge introduced a new data-centric task this year.
This task shifted the focus from model development to improving metastatic lesion segmentation on PET/CT images.
We developed methods to enhance segmentation performance tailored to the characteristics of PET/CT imaging.
- Score: 0.9854844969061186
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The third autoPET challenge introduced a new data-centric task this year, shifting the focus from model development to improving metastatic lesion segmentation on PET/CT images through data quality and handling strategies. In response, we developed targeted methods to enhance segmentation performance tailored to the characteristics of PET/CT imaging. Our approach encompasses two key elements. First, to address potential alignment errors between CT and PET modalities as well as the prevalence of punctate lesions, we modified the baseline data augmentation scheme and extended it with misalignment augmentation. This adaptation aims to improve segmentation accuracy, particularly for tiny metastatic lesions. Second, to tackle the variability in image dimensions significantly affecting the prediction time, we implemented a dynamic ensembling and test-time augmentation (TTA) strategy. This method optimizes the use of ensembling and TTA within a 5-minute prediction time limit, effectively leveraging the generalization potential for both small and large images. Both of our solutions are designed to be robust across different tracers and institutional settings, offering a general, yet imaging-specific approach to the multi-tracer and multi-institutional challenges of the competition. We made the challenge repository with our modifications publicly available at \url{https://github.com/MIC-DKFZ/miccai2024_autopet3_datacentric}.
Related papers
- AutoPET III Challenge: Tumor Lesion Segmentation using ResEnc-Model Ensemble [1.3467243219009812]
We trained a 3D Residual encoder U-Net within the no new U-Net framework to generalize the performance of automatic lesion segmentation.
We leveraged test-time augmentations and other post-processing techniques to enhance tumor lesion segmentation.
Our team currently hold the top position in the Auto-PET III challenge and outperformed the challenge baseline model in the preliminary test set with Dice score of 0.9627.
arXiv Detail & Related papers (2024-09-19T20:18:39Z) - AutoPET III Challenge: PET/CT Semantic Segmentation [0.4905104543244113]
We implemented a two-stage deep learning approach to segment lesions in PET/CT images for the AutoPET III challenge.
The first stage utilized a DynUNet model for coarse segmentation, identifying broad regions of interest.
The second stage refined this segmentation using an ensemble of SwinUNETR, SegResNet, and UNet models.
arXiv Detail & Related papers (2024-09-19T17:45:17Z) - Autopet III challenge: Incorporating anatomical knowledge into nnUNet for lesion segmentation in PET/CT [4.376648893167674]
The autoPET III Challenge focuses on advancing automated segmentation of tumor lesions in PET/CT images.
We developed a classifier that identifies the tracer of the given PET/CT based on the Maximum Intensity Projection of the PET scan.
Our final submission achieves cross-validation Dice scores of 76.90% and 61.33% for the publicly available FDG and PSMA datasets.
arXiv Detail & Related papers (2024-09-18T17:16:57Z) - Enhancing Lesion Segmentation in PET/CT Imaging with Deep Learning and Advanced Data Preprocessing Techniques [2.4549652987344546]
This research employs deep learning to enhance lesion segmentation in PET/CT imaging.
Our methodical approach includes robust preprocessing and data augmentation techniques to ensure model robustness and generalizability.
This study aims to contribute to the standardization of preprocessing and augmentation strategies in PET/CT imaging.
arXiv Detail & Related papers (2024-09-15T16:27:34Z) - AutoPET Challenge: Tumour Synthesis for Data Augmentation [26.236831356731017]
We adapt the DiffTumor method, originally designed for CT images, to generate synthetic PET-CT images with lesions.
Our approach trains the generative model on the AutoPET dataset and uses it to expand the training data.
Our findings show that the model trained on the augmented dataset achieves a higher Dice score, demonstrating the potential of our data augmentation approach.
arXiv Detail & Related papers (2024-09-12T14:23:19Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
This paper presents a coarse-to-fine PET reconstruction framework that consists of a coarse prediction module (CPM) and an iterative refinement module (IRM)
By delegating most of the computational overhead to the CPM, the overall sampling speed of our method can be significantly improved.
Two additional strategies, i.e., an auxiliary guidance strategy and a contrastive diffusion strategy, are proposed and integrated into the reconstruction process.
arXiv Detail & Related papers (2023-08-20T04:10:36Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event.
To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites.
This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features.
arXiv Detail & Related papers (2021-09-08T07:56:51Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19.
segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues.
To address these challenges, a novel COVID-19 Deep Lung Infection Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices.
arXiv Detail & Related papers (2020-04-22T07:30:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.