Enhancing Personalized Recipe Recommendation Through Multi-Class Classification
- URL: http://arxiv.org/abs/2409.10267v1
- Date: Mon, 16 Sep 2024 13:21:09 GMT
- Title: Enhancing Personalized Recipe Recommendation Through Multi-Class Classification
- Authors: Harish Neelam, Koushik Sai Veerella,
- Abstract summary: The problem domain involves recipe recommendations, utilizing techniques such as association analysis and classification.
The paper seeks not only to recommend recipes but also to explore the process involved in achieving accurate and personalized recommendations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper intends to address the challenge of personalized recipe recommendation in the realm of diverse culinary preferences. The problem domain involves recipe recommendations, utilizing techniques such as association analysis and classification. Association analysis explores the relationships and connections between different ingredients to enhance the user experience. Meanwhile, the classification aspect involves categorizing recipes based on user-defined ingredients and preferences. A unique aspect of the paper is the consideration of recipes and ingredients belonging to multiple classes, recognizing the complexity of culinary combinations. This necessitates a sophisticated approach to classification and recommendation, ensuring the system accommodates the nature of recipe categorization. The paper seeks not only to recommend recipes but also to explore the process involved in achieving accurate and personalized recommendations.
Related papers
- Towards Automated Recipe Genre Classification using Semi-Supervised
Learning [4.177122099296939]
We present a dataset named the Assorted, Archetypal, and Annotated Two Million Extended (3A2M+ Cooking Recipe dataset"
This collection of data includes various features such as title, NER, directions, and extended NER, as well as nine different labels representing genres including bakery, drinks, non-veg, vegetables, fast food, cereals, meals, sides, and fusions.
We have demonstrated traditional machine learning, deep learning and pre-trained language models to classify the recipes into their corresponding genre and achieved an overall accuracy of 98.6%.
arXiv Detail & Related papers (2023-10-24T10:03:27Z) - Learning to Substitute Ingredients in Recipes [15.552549060863523]
Recipe personalization through ingredient substitution has the potential to help people meet their dietary needs and preferences, avoid potential allergens, and ease culinary exploration in everyone's kitchen.
We build a benchmark, composed of a dataset of substitution pairs with standardized splits, evaluation metrics, and baselines.
We introduce Graph-based Ingredient Substitution Module (GISMo), a novel model that leverages the context of a recipe as well as generic ingredient relational information encoded within a graph to rank plausible substitutions.
We show through comprehensive experimental validation that GISMo surpasses the best performing baseline by a large margin in terms of mean reciprocal rank.
arXiv Detail & Related papers (2023-02-15T21:49:23Z) - Counterfactual Recipe Generation: Exploring Compositional Generalization
in a Realistic Scenario [60.20197771545983]
We design the counterfactual recipe generation task, which asks models to modify a base recipe according to the change of an ingredient.
We collect a large-scale recipe dataset in Chinese for models to learn culinary knowledge.
Results show that existing models have difficulties in modifying the ingredients while preserving the original text style, and often miss actions that need to be adjusted.
arXiv Detail & Related papers (2022-10-20T17:21:46Z) - RecipeMind: Guiding Ingredient Choices from Food Pairing to Recipe
Completion using Cascaded Set Transformer [15.170251924099807]
RecipeMind is a food affinity score prediction model that quantifies the suitability of adding an ingredient to set of other ingredients.
We constructed a large-scale dataset containing ingredient co-occurrence based scores to train and evaluate RecipeMind on food affinity score prediction.
arXiv Detail & Related papers (2022-10-14T06:35:49Z) - Cross-lingual Adaptation for Recipe Retrieval with Mixup [56.79360103639741]
Cross-modal recipe retrieval has attracted research attention in recent years, thanks to the availability of large-scale paired data for training.
This paper studies unsupervised domain adaptation for image-to-recipe retrieval, where recipes in source and target domains are in different languages.
A novel recipe mixup method is proposed to learn transferable embedding features between the two domains.
arXiv Detail & Related papers (2022-05-08T15:04:39Z) - Learning Structural Representations for Recipe Generation and Food
Retrieval [101.97397967958722]
We propose a novel framework of Structure-aware Generation Network (SGN) to tackle the food recipe generation task.
Our proposed model can produce high-quality and coherent recipes, and achieve the state-of-the-art performance on the benchmark Recipe1M dataset.
arXiv Detail & Related papers (2021-10-04T06:36:31Z) - SHARE: a System for Hierarchical Assistive Recipe Editing [5.508365014509761]
We introduce SHARE: a System for Hierarchical Assistive Recipe Editing to assist home cooks with dietary restrictions.
Our hierarchical recipe editor makes necessary substitutions to a recipe's ingredients list and re-writes the directions to make use of the new ingredients.
We introduce the novel RecipePairs dataset of 84K pairs of similar recipes in which one recipe satisfies one of seven dietary constraints.
arXiv Detail & Related papers (2021-05-17T22:38:07Z) - Structure-Aware Generation Network for Recipe Generation from Images [142.047662926209]
We investigate an open research task of generating cooking instructions based on only food images and ingredients.
Target recipes are long-length paragraphs and do not have annotations on structure information.
We propose a novel framework of Structure-aware Generation Network (SGN) to tackle the food recipe generation task.
arXiv Detail & Related papers (2020-09-02T10:54:25Z) - Decomposing Generation Networks with Structure Prediction for Recipe
Generation [142.047662926209]
We propose a novel framework: Decomposing Generation Networks (DGN) with structure prediction.
Specifically, we split each cooking instruction into several phases, and assign different sub-generators to each phase.
Our approach includes two novel ideas: (i) learning the recipe structures with the global structure prediction component and (ii) producing recipe phases in the sub-generator output component based on the predicted structure.
arXiv Detail & Related papers (2020-07-27T08:47:50Z) - Classification of Cuisines from Sequentially Structured Recipes [8.696042114987966]
classification of cuisines based on their culinary features is an outstanding problem.
We have implemented a range of classification techniques by accounting for this information on the RecipeDB dataset.
The state-of-the-art RoBERTa model presented the highest accuracy of 73.30% among a range of classification models.
arXiv Detail & Related papers (2020-04-26T05:40:36Z) - Cross-Modal Food Retrieval: Learning a Joint Embedding of Food Images
and Recipes with Semantic Consistency and Attention Mechanism [70.85894675131624]
We learn an embedding of images and recipes in a common feature space, such that the corresponding image-recipe embeddings lie close to one another.
We propose Semantic-Consistent and Attention-based Networks (SCAN), which regularize the embeddings of the two modalities through aligning output semantic probabilities.
We show that we can outperform several state-of-the-art cross-modal retrieval strategies for food images and cooking recipes by a significant margin.
arXiv Detail & Related papers (2020-03-09T07:41:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.