Improving Multi-candidate Speculative Decoding
- URL: http://arxiv.org/abs/2409.10644v2
- Date: Mon, 28 Oct 2024 05:51:46 GMT
- Title: Improving Multi-candidate Speculative Decoding
- Authors: Xiaofan Lu, Yixiao Zeng, Feiyang Ma, Zixu Yu, Marco Levorato,
- Abstract summary: Speculative Decoding (SD) is a technique to accelerate the inference of Large Language Models (LLMs)
In this work, we introduce a new version of MCSD that includes a target model multi-candidate generation.
We also evaluate the effects of using the target model multi-candidate process with different draft models on output quality.
- Score: 1.6291177798903276
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Speculative Decoding (SD) is a technique to accelerate the inference of Large Language Models (LLMs) by using a lower complexity draft model to propose candidate tokens verified by a larger target model. To further improve efficiency, Multi-Candidate Speculative Decoding (MCSD) improves upon this by sampling multiple candidate tokens from the draft model at each step and verifying them in parallel, thus increasing the chances of accepting a token and reducing generation time. Existing MCSD methods rely on the draft model to initialize the multi-candidate sequences and use static length and tree attention structure for draft generation. However, such an approach suffers from the draft and target model's output distribution differences, especially in a dynamic generation context. In this work, we introduce a new version of MCSD that includes a target model initialized multi-candidate generation, a dynamic sliced topology-aware causal mask for dynamic length adjustment, and decision models to optimize early stopping. We experimented with our method on Llama 2-7B and its variants and observed a maximum 27.5% speedup compared to our MCSD baseline across three benchmarks with Llama 2-7B as the target model and JackFram 68M as the draft model. Additionally, we evaluate the effects of using the target model initialized multi-candidate process with different draft models on output quality.
Related papers
- Enhancing the Reasoning Ability of Multimodal Large Language Models via Mixed Preference Optimization [65.64108848398696]
We introduce a preference optimization process to enhance the multimodal reasoning capabilities of MLLMs.
We develop a simple yet effective method, termed Mixed Preference Optimization (MPO), which boosts multimodal CoT performance.
Our model, InternVL2-8B-MPO, achieves an accuracy of 67.0 on MathVista, outperforming InternVL2-8B by 8.7 points and achieving performance comparable to the 10x larger InternVL2-76B.
arXiv Detail & Related papers (2024-11-15T18:59:27Z) - ParallelSpec: Parallel Drafter for Efficient Speculative Decoding [62.68430939686566]
We present ParallelSpec, an alternative to auto-regressive drafting strategies in state-of-the-art speculative decoding approaches.
In contrast to auto-regressive drafting in the speculative stage, we train a parallel drafter to serve as an efficient speculative model.
arXiv Detail & Related papers (2024-10-08T01:05:08Z) - Revisiting SMoE Language Models by Evaluating Inefficiencies with Task Specific Expert Pruning [78.72226641279863]
Sparse Mixture of Expert (SMoE) models have emerged as a scalable alternative to dense models in language modeling.
Our research explores task-specific model pruning to inform decisions about designing SMoE architectures.
We introduce an adaptive task-aware pruning technique UNCURL to reduce the number of experts per MoE layer in an offline manner post-training.
arXiv Detail & Related papers (2024-09-02T22:35:03Z) - Graph-Structured Speculative Decoding [52.94367724136063]
Speculative decoding has emerged as a promising technique to accelerate the inference of Large Language Models.
We introduce an innovative approach utilizing a directed acyclic graph (DAG) to manage the drafted hypotheses.
We observe a remarkable speedup of 1.73$times$ to 1.96$times$, significantly surpassing standard speculative decoding.
arXiv Detail & Related papers (2024-07-23T06:21:24Z) - S2D: Sorted Speculative Decoding For More Efficient Deployment of Nested Large Language Models [32.68002253527712]
We introduce a novel multi-target scenario for the deployment of draft models for faster inference.
We present a novel, more efficient sorted speculative decoding mechanism that outperforms regular baselines in multi-target settings.
arXiv Detail & Related papers (2024-07-02T05:14:15Z) - Adaptive Draft-Verification for Efficient Large Language Model Decoding [24.347886232342862]
Large language model (LLM) decoding involves generating a sequence of tokens based on a given context.
The typical autoregressive decoding method requires a separate forward pass through the model for each token generated.
We introduce ADED, which accelerates LLM decoding without requiring fine-tuning.
arXiv Detail & Related papers (2024-06-27T22:20:39Z) - Multi-Candidate Speculative Decoding [82.05519287513444]
Large language models have shown impressive capabilities across a variety of NLP tasks, yet their generating text autoregressively is time-consuming.
One way to speed them up is speculative decoding, which generates candidate segments from a fast draft model that is then verified in parallel by the target model.
This paper proposes sampling multiple candidates from a draft model and then organising them in batches for verification.
We design algorithms for efficient multi-candidate verification while maintaining the distribution of the target model.
arXiv Detail & Related papers (2024-01-12T17:15:23Z) - DistillSpec: Improving Speculative Decoding via Knowledge Distillation [70.61777015900272]
Speculative decoding (SD) accelerates large language model inference by employing a faster draft model for generating multiple tokens.
We propose DistillSpec that uses knowledge distillation to better align the draft model with the target model, before applying SD.
We show that DistillSpec yields impressive 10 - 45% speedups over standard SD on a range of standard benchmarks.
arXiv Detail & Related papers (2023-10-12T16:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.