Playground v3: Improving Text-to-Image Alignment with Deep-Fusion Large Language Models
- URL: http://arxiv.org/abs/2409.10695v2
- Date: Mon, 21 Oct 2024 20:01:13 GMT
- Title: Playground v3: Improving Text-to-Image Alignment with Deep-Fusion Large Language Models
- Authors: Bingchen Liu, Ehsan Akhgari, Alexander Visheratin, Aleks Kamko, Linmiao Xu, Shivam Shrirao, Chase Lambert, Joao Souza, Suhail Doshi, Daiqing Li,
- Abstract summary: We introduce Playground v3 (PGv3), our latest text-to-image model.
It achieves state-of-the-art (SoTA) performance across multiple testing benchmarks.
It excels in text prompt adherence, complex reasoning, and accurate text rendering.
- Score: 38.52953013858373
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce Playground v3 (PGv3), our latest text-to-image model that achieves state-of-the-art (SoTA) performance across multiple testing benchmarks, excels in graphic design abilities and introduces new capabilities. Unlike traditional text-to-image generative models that rely on pre-trained language models like T5 or CLIP text encoders, our approach fully integrates Large Language Models (LLMs) with a novel structure that leverages text conditions exclusively from a decoder-only LLM. Additionally, to enhance image captioning quality-we developed an in-house captioner, capable of generating captions with varying levels of detail, enriching the diversity of text structures. We also introduce a new benchmark CapsBench to evaluate detailed image captioning performance. Experimental results demonstrate that PGv3 excels in text prompt adherence, complex reasoning, and accurate text rendering. User preference studies indicate the super-human graphic design ability of our model for common design applications, such as stickers, posters, and logo designs. Furthermore, PGv3 introduces new capabilities, including precise RGB color control and robust multilingual understanding.
Related papers
- Towards Visual Text Design Transfer Across Languages [49.78504488452978]
We introduce a novel task of Multimodal Style Translation (MuST-Bench)
MuST-Bench is a benchmark designed to evaluate the ability of visual text generation models to perform translation across different writing systems.
In response, we introduce SIGIL, a framework for multimodal style translation that eliminates the need for style descriptions.
arXiv Detail & Related papers (2024-10-24T15:15:01Z) - StrucTexTv3: An Efficient Vision-Language Model for Text-rich Image Perception, Comprehension, and Beyond [68.0107158115377]
We have crafted an efficient vision-language model, StrucTexTv3, tailored to tackle various intelligent tasks for text-rich images.
We enhance the perception and comprehension abilities of StrucTexTv3 through instruction learning.
Our method achieved SOTA results in text-rich image perception tasks, and significantly improved performance in comprehension tasks.
arXiv Detail & Related papers (2024-05-31T16:55:04Z) - Language Quantized AutoEncoders: Towards Unsupervised Text-Image
Alignment [81.73717488887938]
Language-Quantized AutoEncoder (LQAE) learns to align text-image data in an unsupervised manner by leveraging pretrained language models.
LQAE learns to represent similar images with similar clusters of text tokens, thereby aligning these two modalities without the use of aligned text-image pairs.
This enables few-shot image classification with large language models (e.g., GPT-3) as well as linear classification of images based on BERT text features.
arXiv Detail & Related papers (2023-02-02T06:38:44Z) - Scaling Autoregressive Models for Content-Rich Text-to-Image Generation [95.02406834386814]
Parti treats text-to-image generation as a sequence-to-sequence modeling problem.
Parti uses a Transformer-based image tokenizer, ViT-VQGAN, to encode images as sequences of discrete tokens.
PartiPrompts (P2) is a new holistic benchmark of over 1600 English prompts.
arXiv Detail & Related papers (2022-06-22T01:11:29Z) - On Advances in Text Generation from Images Beyond Captioning: A Case
Study in Self-Rationalization [89.94078728495423]
We show that recent advances in each modality, CLIP image representations and scaling of language models, do not consistently improve multimodal self-rationalization of tasks with multimodal inputs.
Our findings call for a backbone modelling approach that can be built on to advance text generation from images and text beyond image captioning.
arXiv Detail & Related papers (2022-05-24T00:52:40Z) - Fusion Models for Improved Visual Captioning [18.016295296424413]
This paper proposes a generic multimodal model fusion framework for caption generation and emendation.
We employ the same fusion strategies to integrate a pretrained Masked Language Model (MLM) with a visual captioning model, viz. Show, Attend, and Tell.
Our caption emendation experiments on three benchmark image captioning datasets, viz. Flickr8k, Flickr30k, and MSCOCO, show improvements over the baseline.
arXiv Detail & Related papers (2020-10-28T21:55:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.