SIFToM: Robust Spoken Instruction Following through Theory of Mind
- URL: http://arxiv.org/abs/2409.10849v1
- Date: Tue, 17 Sep 2024 02:36:10 GMT
- Title: SIFToM: Robust Spoken Instruction Following through Theory of Mind
- Authors: Lance Ying, Jason Xinyu Liu, Shivam Aarya, Yizirui Fang, Stefanie Tellex, Joshua B. Tenenbaum, Tianmin Shu,
- Abstract summary: We present a cognitively inspired model, Speech Instruction Following through Theory of Mind (SIFToM), to enable robots to pragmatically follow human instructions under diverse speech conditions.
Results show that the SIFToM model outperforms state-of-the-art speech and language models, approaching human-level accuracy on challenging speech instruction following tasks.
- Score: 51.326266354164716
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spoken language instructions are ubiquitous in agent collaboration. However, in human-robot collaboration, recognition accuracy for human speech is often influenced by various speech and environmental factors, such as background noise, the speaker's accents, and mispronunciation. When faced with noisy or unfamiliar auditory inputs, humans use context and prior knowledge to disambiguate the stimulus and take pragmatic actions, a process referred to as top-down processing in cognitive science. We present a cognitively inspired model, Speech Instruction Following through Theory of Mind (SIFToM), to enable robots to pragmatically follow human instructions under diverse speech conditions by inferring the human's goal and joint plan as prior for speech perception and understanding. We test SIFToM in simulated home experiments (VirtualHome 2). Results show that the SIFToM model outperforms state-of-the-art speech and language models, approaching human-level accuracy on challenging speech instruction following tasks. We then demonstrate its ability at the task planning level on a mobile manipulator for breakfast preparation tasks.
Related papers
- Situated Instruction Following [87.37244711380411]
We propose situated instruction following, which embraces the inherent underspecification and ambiguity of real-world communication.
The meaning of situated instructions naturally unfold through the past actions and the expected future behaviors of the human involved.
Our experiments indicate that state-of-the-art Embodied Instruction Following (EIF) models lack holistic understanding of situated human intention.
arXiv Detail & Related papers (2024-07-15T19:32:30Z) - Real-time Addressee Estimation: Deployment of a Deep-Learning Model on
the iCub Robot [52.277579221741746]
Addressee Estimation is a skill essential for social robots to interact smoothly with humans.
Inspired by human perceptual skills, a deep-learning model for Addressee Estimation is designed, trained, and deployed on an iCub robot.
The study presents the procedure of such implementation and the performance of the model deployed in real-time human-robot interaction.
arXiv Detail & Related papers (2023-11-09T13:01:21Z) - Speech-Gesture GAN: Gesture Generation for Robots and Embodied Agents [5.244401764969407]
Embodied agents, in the form of virtual agents or social robots, are rapidly becoming more widespread.
We propose a novel framework that can generate sequences of joint angles from the speech text and speech audio utterances.
arXiv Detail & Related papers (2023-09-17T18:46:25Z) - Speaking the Language of Your Listener: Audience-Aware Adaptation via
Plug-and-Play Theory of Mind [4.052000839878213]
We model a visually grounded referential game between a knowledgeable speaker and a listener with more limited visual and linguistic experience.
We endow our speaker with the ability to adapt its referring expressions via a simulation module that monitors the effectiveness of planned utterances from the listener's perspective.
arXiv Detail & Related papers (2023-05-31T15:17:28Z) - Computational Language Acquisition with Theory of Mind [84.2267302901888]
We build language-learning agents equipped with Theory of Mind (ToM) and measure its effects on the learning process.
We find that training speakers with a highly weighted ToM listener component leads to performance gains in our image referential game setting.
arXiv Detail & Related papers (2023-03-02T18:59:46Z) - Perception Point: Identifying Critical Learning Periods in Speech for
Bilingual Networks [58.24134321728942]
We compare and identify cognitive aspects on deep neural-based visual lip-reading models.
We observe a strong correlation between these theories in cognitive psychology and our unique modeling.
arXiv Detail & Related papers (2021-10-13T05:30:50Z) - Few-shot Language Coordination by Modeling Theory of Mind [95.54446989205117]
We study the task of few-shot $textitlanguage coordination$.
We require the lead agent to coordinate with a $textitpopulation$ of agents with different linguistic abilities.
This requires the ability to model the partner's beliefs, a vital component of human communication.
arXiv Detail & Related papers (2021-07-12T19:26:11Z) - Language-Conditioned Imitation Learning for Robot Manipulation Tasks [39.40937105264774]
We introduce a method for incorporating unstructured natural language into imitation learning.
At training time, the expert can provide demonstrations along with verbal descriptions in order to describe the underlying intent.
The training process then interrelates these two modalities to encode the correlations between language, perception, and motion.
The resulting language-conditioned visuomotor policies can be conditioned at runtime on new human commands and instructions.
arXiv Detail & Related papers (2020-10-22T21:49:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.