A Physics Informed Neural Network (PINN) Methodology for Coupled Moving Boundary PDEs
- URL: http://arxiv.org/abs/2409.10910v1
- Date: Tue, 17 Sep 2024 06:00:18 GMT
- Title: A Physics Informed Neural Network (PINN) Methodology for Coupled Moving Boundary PDEs
- Authors: Shivprasad Kathane, Shyamprasad Karagadde,
- Abstract summary: Physics-Informed Neural Network (PINN) is a novel multi-task learning framework useful for solving physical problems modeled using differential equations (DEs)
This paper reports a PINN-based approach to solve coupled systems involving multiple governing parameters (energy and species, along with multiple interface balance equations)
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Physics-Informed Neural Network (PINN) is a novel multi-task learning framework useful for solving physical problems modeled using differential equations (DEs) by integrating the knowledge of physics and known constraints into the components of deep learning. A large class of physical problems in materials science and mechanics involve moving boundaries, where interface flux balance conditions are to be satisfied while solving DEs. Examples of such systems include free surface flows, shock propagation, solidification of pure and alloy systems etc. While recent research works have explored applicability of PINNs for an uncoupled system (such as solidification of pure system), the present work reports a PINN-based approach to solve coupled systems involving multiple governing parameters (energy and species, along with multiple interface balance equations). This methodology employs an architecture consisting of a separate network for each variable with a separate treatment of each phase, a training strategy which alternates between temporal learning and adaptive loss weighting, and a scheme which progressively reduces the optimisation space. While solving the benchmark problem of binary alloy solidification, it is distinctly successful at capturing the complex composition profile, which has a characteristic discontinuity at the interface and the resulting predictions align well with the analytical solutions. The procedure can be generalised for solving other transient multiphysics problems especially in the low-data regime and in cases where measurements can reveal new physics.
Related papers
- SetPINNs: Set-based Physics-informed Neural Networks [19.27512418720287]
Physics-Informed Neural Networks (PINNs) have emerged as a promising method for approximating solutions to partial differential equations (PDEs) using deep learning.
We propose SetPINNs, a novel approach inspired by Finite Elements Methods from the field of Numerical Analysis.
We show that SetPINNs demonstrate superior generalization performance and accuracy across diverse physical systems.
arXiv Detail & Related papers (2024-09-30T11:41:58Z) - Pretraining Codomain Attention Neural Operators for Solving Multiphysics PDEs [85.40198664108624]
We propose Codomain Attention Neural Operator (CoDA-NO) to solve multiphysics problems with PDEs.
CoDA-NO tokenizes functions along the codomain or channel space, enabling self-supervised learning or pretraining of multiple PDE systems.
We find CoDA-NO to outperform existing methods by over 36% on complex downstream tasks with limited data.
arXiv Detail & Related papers (2024-03-19T08:56:20Z) - Physics-aware deep learning framework for linear elasticity [0.0]
The paper presents an efficient and robust data-driven deep learning (DL) computational framework for linear continuum elasticity problems.
For an accurate representation of the field variables, a multi-objective loss function is proposed.
Several benchmark problems including the Airimaty solution to elasticity and the Kirchhoff-Love plate problem are solved.
arXiv Detail & Related papers (2023-02-19T20:33:32Z) - Mixed formulation of physics-informed neural networks for
thermo-mechanically coupled systems and heterogeneous domains [0.0]
Physics-informed neural networks (PINNs) are a new tool for solving boundary value problems.
Recent investigations have shown that when designing loss functions for many engineering problems, using first-order derivatives and combining equations from both strong and weak forms can lead to much better accuracy.
In this work, we propose applying the mixed formulation to solve multi-physical problems, specifically a stationary thermo-mechanically coupled system of equations.
arXiv Detail & Related papers (2023-02-09T21:56:59Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
In this work, we assess the ability of physics-informed neural networks (PINNs) to solve increasingly-complex coupled ordinary differential equations (ODEs)
We show that PINNs eventually fail to produce correct solutions to these benchmarks as their complexity increases.
We identify several reasons why this may be the case, including insufficient network capacity, poor conditioning of the ODEs, and high local curvature, as measured by the Laplacian of the PINN loss.
arXiv Detail & Related papers (2022-10-14T15:01:32Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Parallel Physics-Informed Neural Networks with Bidirectional Balance [0.0]
physics-informed neural networks (PINNs) have been widely used to solve various partial differential equations (PDEs) in engineering.
Here we take heat transfer problem in multilayer fabrics as a typical example.
We propose a parallel physics-informed neural networks with bidirectional balance.
Our approach makes the PINNs unsolvable problem solvable, and achieves excellent solving accuracy.
arXiv Detail & Related papers (2021-11-10T11:13:33Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
Recently, physics informed neural networks have successfully been applied to a broad variety of problems in applied mathematics and engineering.
Due to the global approximation, physics informed neural networks have difficulties in displaying localized effects and strong non-linear solutions by optimization.
It is shown, that the domain decomposition approach is able to accurately resolve nonlinear stress, displacement and energy fields in heterogeneous microstructures obtained from real-world $mu$CT-scans.
arXiv Detail & Related papers (2021-10-14T14:05:19Z) - Physics and Equality Constrained Artificial Neural Networks: Application
to Partial Differential Equations [1.370633147306388]
Physics-informed neural networks (PINNs) have been proposed to learn the solution of partial differential equations (PDE)
Here, we show that this specific way of formulating the objective function is the source of severe limitations in the PINN approach.
We propose a versatile framework that can tackle both inverse and forward problems.
arXiv Detail & Related papers (2021-09-30T05:55:35Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z) - Learning to Control PDEs with Differentiable Physics [102.36050646250871]
We present a novel hierarchical predictor-corrector scheme which enables neural networks to learn to understand and control complex nonlinear physical systems over long time frames.
We demonstrate that our method successfully develops an understanding of complex physical systems and learns to control them for tasks involving PDEs.
arXiv Detail & Related papers (2020-01-21T11:58:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.