Contrasformer: A Brain Network Contrastive Transformer for Neurodegenerative Condition Identification
- URL: http://arxiv.org/abs/2409.10944v1
- Date: Tue, 17 Sep 2024 07:26:02 GMT
- Title: Contrasformer: A Brain Network Contrastive Transformer for Neurodegenerative Condition Identification
- Authors: Jiaxing Xu, Kai He, Mengcheng Lan, Qingtian Bian, Wei Li, Tieying Li, Yiping Ke, Miao Qiao,
- Abstract summary: We propose Contrasformer, a novel contrastive brain network Transformer.
It generates a prior-knowledge-enhanced contrast graph to address the distribution shifts across sub-populations.
Contrasformer outperforms the state-of-the-art methods for brain networks by achieving up to 10.8% improvement in accuracy.
- Score: 15.24676785238373
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Understanding neurological disorder is a fundamental problem in neuroscience, which often requires the analysis of brain networks derived from functional magnetic resonance imaging (fMRI) data. Despite the prevalence of Graph Neural Networks (GNNs) and Graph Transformers in various domains, applying them to brain networks faces challenges. Specifically, the datasets are severely impacted by the noises caused by distribution shifts across sub-populations and the neglect of node identities, both obstruct the identification of disease-specific patterns. To tackle these challenges, we propose Contrasformer, a novel contrastive brain network Transformer. It generates a prior-knowledge-enhanced contrast graph to address the distribution shifts across sub-populations by a two-stream attention mechanism. A cross attention with identity embedding highlights the identity of nodes, and three auxiliary losses ensure group consistency. Evaluated on 4 functional brain network datasets over 4 different diseases, Contrasformer outperforms the state-of-the-art methods for brain networks by achieving up to 10.8\% improvement in accuracy, which demonstrates its efficacy in neurological disorder identification. Case studies illustrate its interpretability, especially in the context of neuroscience. This paper provides a solution for analyzing brain networks, offering valuable insights into neurological disorders. Our code is available at \url{https://github.com/AngusMonroe/Contrasformer}.
Related papers
- BrainODE: Dynamic Brain Signal Analysis via Graph-Aided Neural Ordinary Differential Equations [67.79256149583108]
We propose a novel model called BrainODE to achieve continuous modeling of dynamic brain signals.
By learning latent initial values and neural ODE functions from irregular time series, BrainODE effectively reconstructs brain signals at any time point.
arXiv Detail & Related papers (2024-04-30T10:53:30Z) - Adaptive Critical Subgraph Mining for Cognitive Impairment Conversion Prediction with T1-MRI-based Brain Network [4.835051121929712]
Prediction the conversion to early-stage dementia is critical for mitigating its progression.
Traditional T1-weighted magnetic resonance imaging (T1-MRI) research focus on identifying brain atrophy regions.
Brain-SubGNN is a novel graph representation network to mine and enhance critical subgraphs based on T1-MRI.
arXiv Detail & Related papers (2024-03-20T06:46:01Z) - Deep learning reveals the common spectrum underlying multiple brain
disorders in youth and elders from brain functional networks [53.257804915263165]
Brain disorders in the early and late life of humans potentially share pathological alterations in brain functions.
Key evidence from neuroimaging data for pathological commonness remains unrevealed.
We build a deep learning model, using multi-site functional magnetic resonance imaging data, for classifying 5 different brain disorders from healthy controls.
arXiv Detail & Related papers (2023-02-23T09:22:05Z) - Interpretable Graph Neural Networks for Connectome-Based Brain Disorder
Analysis [31.281194583900998]
We propose an interpretable framework to analyze disorder-specific Regions of Interest (ROIs) and prominent connections.
The proposed framework consists of two modules: a brain-network-oriented backbone model for disease prediction and a globally shared explanation generator.
arXiv Detail & Related papers (2022-06-30T08:02:05Z) - Searching for the Essence of Adversarial Perturbations [73.96215665913797]
We show that adversarial perturbations contain human-recognizable information, which is the key conspirator responsible for a neural network's erroneous prediction.
This concept of human-recognizable information allows us to explain key features related to adversarial perturbations.
arXiv Detail & Related papers (2022-05-30T18:04:57Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
Graph mining on brain networks may facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
We propose a novel graph learning framework, known as Deep Signed Brain Networks (DSBN), with a signed graph encoder.
We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets.
arXiv Detail & Related papers (2022-05-06T03:45:36Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
We propose a novel brain network representation framework, namely BN-GNN, which searches for the optimal GNN architecture for each brain network.
Our proposed BN-GNN improves the performance of traditional GNNs on different brain network analysis tasks.
arXiv Detail & Related papers (2022-03-18T07:05:27Z) - BrainNNExplainer: An Interpretable Graph Neural Network Framework for
Brain Network based Disease Analysis [23.961196793115786]
Interpretable brain network models for disease prediction are of great value for the advancement of neuroscience.
BrainNNExplainer is an interpretable GNN framework for brain network analysis.
arXiv Detail & Related papers (2021-07-11T17:33:02Z) - Joint Embedding of Structural and Functional Brain Networks with Graph
Neural Networks for Mental Illness Diagnosis [17.48272758284748]
Graph Neural Networks (GNNs) have become a de facto model for analyzing graph-structured data.
We develop a novel multiview GNN for multimodal brain networks.
In particular, we regard each modality as a view for brain networks and employ contrastive learning for multimodal fusion.
arXiv Detail & Related papers (2021-07-07T13:49:57Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z) - Learning Multi-resolution Graph Edge Embedding for Discovering Brain Network Dysfunction in Neurological Disorders [10.12649945620901]
We propose Multi-resolution Edge Network (MENET) to detect disease-specific connectomic benchmarks.
MENET accurately predicts diagnostic labels and identifies brain connectivities highly associated with neurological disorders.
arXiv Detail & Related papers (2019-12-03T03:46:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.