Enhancing Low-Resource Language and Instruction Following Capabilities of Audio Language Models
- URL: http://arxiv.org/abs/2409.10999v1
- Date: Tue, 17 Sep 2024 09:04:03 GMT
- Title: Enhancing Low-Resource Language and Instruction Following Capabilities of Audio Language Models
- Authors: Potsawee Manakul, Guangzhi Sun, Warit Sirichotedumrong, Kasima Tharnpipitchai, Kunat Pipatanakul,
- Abstract summary: This paper examines the performance of existing audio language models in an underserved language using Thai.
Despite being built on multilingual backbones, audio language models do not exhibit cross-lingual emergent abilities.
This paper integrates audio comprehension and speech instruction-following capabilities into a single unified model.
- Score: 13.855545744177586
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Audio language models can understand audio inputs and perform a range of audio-related tasks based on instructions, such as speech recognition and audio captioning, where the instructions are usually textual prompts. Audio language models are mostly initialized from pre-trained audio encoders and large language models (LLMs). Although these pre-trained components were developed to support multiple languages, audio-language models are trained predominantly on English data, which may limit their usability to only English instructions or English speech inputs. First, this paper examines the performance of existing audio language models in an underserved language using Thai as an example. This paper demonstrates that, despite being built on multilingual backbones, audio language models do not exhibit cross-lingual emergent abilities to low-resource languages. Second, this paper studies data mixture for developing audio language models that are optimized for a target language as well as English. In addition. this paper integrates audio comprehension and speech instruction-following capabilities into a single unified model. Our experiments provide insights into data mixture for enhancing instruction-following capabilities in both a low-resource language and English. Our model, Typhoon-Audio, outperforms existing open-source audio language models by a considerable margin, and it is comparable to state-of-the-art Gemini-1.5-Pro in both English and Thai languages.
Related papers
- Teach me with a Whisper: Enhancing Large Language Models for Analyzing
Spoken Transcripts using Speech Embeddings [8.660203441911554]
We propose a methodology for training language models leveraging spoken language audio data.
This leads to an improved language model for analyzing spoken transcripts while avoiding an audio processing overhead at test time.
In our experiments, the student model achieves consistent improvement over traditional language models on tasks analyzing spoken transcripts.
arXiv Detail & Related papers (2023-11-13T01:53:12Z) - Lip Reading for Low-resource Languages by Learning and Combining General
Speech Knowledge and Language-specific Knowledge [57.38948190611797]
This paper proposes a novel lip reading framework, especially for low-resource languages.
Since low-resource languages do not have enough video-text paired data to train the model, it is regarded as challenging to develop lip reading models for low-resource languages.
arXiv Detail & Related papers (2023-08-18T05:19:03Z) - AudioPaLM: A Large Language Model That Can Speak and Listen [79.44757696533709]
We introduce AudioPaLM, a large language model for speech understanding and generation.
AudioPaLM fuses text-based and speech-based language models.
It can process and generate text and speech with applications including speech recognition and speech-to-speech translation.
arXiv Detail & Related papers (2023-06-22T14:37:54Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
We propose XLM-P, which contextually retrieves prompts as flexible guidance for encoding instances conditionally.
Our XLM-P enables (1) lightweight modeling of language-invariant and language-specific knowledge across languages, and (2) easy integration with other multilingual pre-training methods.
arXiv Detail & Related papers (2023-06-13T08:08:08Z) - Hindi as a Second Language: Improving Visually Grounded Speech with
Semantically Similar Samples [89.16814518860357]
The objective of this work is to explore the learning of visually grounded speech models (VGS) from multilingual perspective.
Our key contribution in this work is to leverage the power of a high-resource language in a bilingual visually grounded speech model to improve the performance of a low-resource language.
arXiv Detail & Related papers (2023-03-30T16:34:10Z) - Learning Cross-lingual Visual Speech Representations [108.68531445641769]
Cross-lingual self-supervised visual representation learning has been a growing research topic in the last few years.
We use the recently-proposed Raw Audio-Visual Speechs (RAVEn) framework to pre-train an audio-visual model with unlabelled data.
Our experiments show that: (1) multi-lingual models with more data outperform monolingual ones, but, when keeping the amount of data fixed, monolingual models tend to reach better performance.
arXiv Detail & Related papers (2023-03-14T17:05:08Z) - Adapting Multilingual Speech Representation Model for a New,
Underresourced Language through Multilingual Fine-tuning and Continued
Pretraining [2.3513645401551333]
We investigate the possibility for adapting an existing multilingual wav2vec 2.0 model for a new language.
Our results show that continued pretraining is the most effective method to adapt a wav2vec 2.0 model for a new language.
We find that if a model pretrained on a related speech variety or an unrelated language with similar phonological characteristics is available, multilingual fine-tuning using additional data from that language can have positive impact on speech recognition performance.
arXiv Detail & Related papers (2023-01-18T03:57:53Z) - Exploring Teacher-Student Learning Approach for Multi-lingual
Speech-to-Intent Classification [73.5497360800395]
We develop an end-to-end system that supports multiple languages.
We exploit knowledge from a pre-trained multi-lingual natural language processing model.
arXiv Detail & Related papers (2021-09-28T04:43:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.