Enhancing Low-Resource Language and Instruction Following Capabilities of Audio Language Models
- URL: http://arxiv.org/abs/2409.10999v2
- Date: Fri, 23 May 2025 10:37:01 GMT
- Title: Enhancing Low-Resource Language and Instruction Following Capabilities of Audio Language Models
- Authors: Potsawee Manakul, Guangzhi Sun, Warit Sirichotedumrong, Kasima Tharnpipitchai, Kunat Pipatanakul,
- Abstract summary: This paper evaluates audio language models on Thai, a low-resource language, and finds that they lack emergent cross-lingual abilities despite their multilingual foundations.<n>Our experiments provide insights into improving instruction-following in low-resource languages by balancing language-specific and multilingual training data.<n>The proposed model, Typhoon-Audio, significantly outperforms existing open-source models and achieves performance comparable to state-of-the-art Gemini-1.5-Pro in both English and Thai.
- Score: 13.855545744177586
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Audio language models process audio inputs using textual prompts for tasks like speech recognition and audio captioning. Although built on multilingual pre-trained components, most are trained primarily on English, limiting their usability for other languages. This paper evaluates audio language models on Thai, a low-resource language, and finds that they lack emergent cross-lingual abilities despite their multilingual foundations. To address this, we explore data mixtures that optimize audio language models for both a target language and English while integrating audio comprehension and speech instruction-following into a unified model. Our experiments provide insights into improving instruction-following in low-resource languages by balancing language-specific and multilingual training data. The proposed model, Typhoon-Audio, significantly outperforms existing open-source models and achieves performance comparable to state-of-the-art Gemini-1.5-Pro in both English and Thai.
Related papers
- LlamaTurk: Adapting Open-Source Generative Large Language Models for Low-Resource Language [2.9914612342004503]
This study explores an alternative solution by adapting large language models, primarily trained on English, to low-resource languages.
We assess various strategies, including continual training, instruction fine-tuning, task-specific fine-tuning, and vocabulary extension.
The results show that continual training improves language comprehension, as reflected in perplexity scores, and task-specific tuning generally enhances performance of downstream tasks.
arXiv Detail & Related papers (2024-05-13T13:41:59Z) - Teach me with a Whisper: Enhancing Large Language Models for Analyzing
Spoken Transcripts using Speech Embeddings [8.660203441911554]
We propose a methodology for training language models leveraging spoken language audio data.
This leads to an improved language model for analyzing spoken transcripts while avoiding an audio processing overhead at test time.
In our experiments, the student model achieves consistent improvement over traditional language models on tasks analyzing spoken transcripts.
arXiv Detail & Related papers (2023-11-13T01:53:12Z) - Lip Reading for Low-resource Languages by Learning and Combining General
Speech Knowledge and Language-specific Knowledge [57.38948190611797]
This paper proposes a novel lip reading framework, especially for low-resource languages.
Since low-resource languages do not have enough video-text paired data to train the model, it is regarded as challenging to develop lip reading models for low-resource languages.
arXiv Detail & Related papers (2023-08-18T05:19:03Z) - AudioPaLM: A Large Language Model That Can Speak and Listen [79.44757696533709]
We introduce AudioPaLM, a large language model for speech understanding and generation.
AudioPaLM fuses text-based and speech-based language models.
It can process and generate text and speech with applications including speech recognition and speech-to-speech translation.
arXiv Detail & Related papers (2023-06-22T14:37:54Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
We propose XLM-P, which contextually retrieves prompts as flexible guidance for encoding instances conditionally.
Our XLM-P enables (1) lightweight modeling of language-invariant and language-specific knowledge across languages, and (2) easy integration with other multilingual pre-training methods.
arXiv Detail & Related papers (2023-06-13T08:08:08Z) - Hindi as a Second Language: Improving Visually Grounded Speech with
Semantically Similar Samples [89.16814518860357]
The objective of this work is to explore the learning of visually grounded speech models (VGS) from multilingual perspective.
Our key contribution in this work is to leverage the power of a high-resource language in a bilingual visually grounded speech model to improve the performance of a low-resource language.
arXiv Detail & Related papers (2023-03-30T16:34:10Z) - Learning Cross-lingual Visual Speech Representations [108.68531445641769]
Cross-lingual self-supervised visual representation learning has been a growing research topic in the last few years.
We use the recently-proposed Raw Audio-Visual Speechs (RAVEn) framework to pre-train an audio-visual model with unlabelled data.
Our experiments show that: (1) multi-lingual models with more data outperform monolingual ones, but, when keeping the amount of data fixed, monolingual models tend to reach better performance.
arXiv Detail & Related papers (2023-03-14T17:05:08Z) - Adapting Multilingual Speech Representation Model for a New,
Underresourced Language through Multilingual Fine-tuning and Continued
Pretraining [2.3513645401551333]
We investigate the possibility for adapting an existing multilingual wav2vec 2.0 model for a new language.
Our results show that continued pretraining is the most effective method to adapt a wav2vec 2.0 model for a new language.
We find that if a model pretrained on a related speech variety or an unrelated language with similar phonological characteristics is available, multilingual fine-tuning using additional data from that language can have positive impact on speech recognition performance.
arXiv Detail & Related papers (2023-01-18T03:57:53Z) - Exploring Teacher-Student Learning Approach for Multi-lingual
Speech-to-Intent Classification [73.5497360800395]
We develop an end-to-end system that supports multiple languages.
We exploit knowledge from a pre-trained multi-lingual natural language processing model.
arXiv Detail & Related papers (2021-09-28T04:43:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.