MonoKAN: Certified Monotonic Kolmogorov-Arnold Network
- URL: http://arxiv.org/abs/2409.11078v1
- Date: Tue, 17 Sep 2024 11:10:59 GMT
- Title: MonoKAN: Certified Monotonic Kolmogorov-Arnold Network
- Authors: Alejandro Polo-Molina, David Alfaya, Jose Portela,
- Abstract summary: In certain applications, model predictions must align with expert-imposed requirements, sometimes exemplified by partial monotonicity constraints.
We introduce a novel ANN architecture called MonoKAN, based on the KAN architecture and achieves certified partial monotonicity while enhancing interpretability.
Our experiments demonstrate that MonoKAN not only enhances interpretability but also improves predictive performance across the majority of benchmarks, outperforming state-of-the-art monotonic approaches.
- Score: 48.623199394622546
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial Neural Networks (ANNs) have significantly advanced various fields by effectively recognizing patterns and solving complex problems. Despite these advancements, their interpretability remains a critical challenge, especially in applications where transparency and accountability are essential. To address this, explainable AI (XAI) has made progress in demystifying ANNs, yet interpretability alone is often insufficient. In certain applications, model predictions must align with expert-imposed requirements, sometimes exemplified by partial monotonicity constraints. While monotonic approaches are found in the literature for traditional Multi-layer Perceptrons (MLPs), they still face difficulties in achieving both interpretability and certified partial monotonicity. Recently, the Kolmogorov-Arnold Network (KAN) architecture, based on learnable activation functions parametrized as splines, has been proposed as a more interpretable alternative to MLPs. Building on this, we introduce a novel ANN architecture called MonoKAN, which is based on the KAN architecture and achieves certified partial monotonicity while enhancing interpretability. To achieve this, we employ cubic Hermite splines, which guarantee monotonicity through a set of straightforward conditions. Additionally, by using positive weights in the linear combinations of these splines, we ensure that the network preserves the monotonic relationships between input and output. Our experiments demonstrate that MonoKAN not only enhances interpretability but also improves predictive performance across the majority of benchmarks, outperforming state-of-the-art monotonic MLP approaches.
Related papers
- Beyond Interpretability: The Gains of Feature Monosemanticity on Model Robustness [68.69369585600698]
Deep learning models often suffer from a lack of interpretability due to polysemanticity.
Recent advances in monosemanticity, where neurons correspond to consistent and distinct semantics, have significantly improved interpretability.
We show that monosemantic features not only enhance interpretability but also bring concrete gains in model performance.
arXiv Detail & Related papers (2024-10-27T18:03:20Z) - Preserving Multi-Modal Capabilities of Pre-trained VLMs for Improving Vision-Linguistic Compositionality [69.76121008898677]
Fine-grained Selective Calibrated CLIP integrates local hard negative loss and selective calibrated regularization.
Our evaluations show that FSC-CLIP not only achieves compositionality on par with state-of-the-art models but also retains strong multi-modal capabilities.
arXiv Detail & Related papers (2024-10-07T17:16:20Z) - Expressive Monotonic Neural Networks [1.0128808054306184]
The monotonic dependence of the outputs of a neural network on some of its inputs is a crucial inductive bias in many scenarios where domain knowledge dictates such behavior.
We propose a weight-constrained architecture with a single residual connection to achieve exact monotonic dependence in any subset of the inputs.
We show how the algorithm is used to train powerful, robust, and interpretable discriminators that achieve competitive performance.
arXiv Detail & Related papers (2023-07-14T17:59:53Z) - Contextualizing MLP-Mixers Spatiotemporally for Urban Data Forecast at Scale [54.15522908057831]
We propose an adapted version of the computationally-Mixer for STTD forecast at scale.
Our results surprisingly show that this simple-yeteffective solution can rival SOTA baselines when tested on several traffic benchmarks.
Our findings contribute to the exploration of simple-yet-effective models for real-world STTD forecasting.
arXiv Detail & Related papers (2023-07-04T05:19:19Z) - Synergies between Disentanglement and Sparsity: Generalization and
Identifiability in Multi-Task Learning [79.83792914684985]
We prove a new identifiability result that provides conditions under which maximally sparse base-predictors yield disentangled representations.
Motivated by this theoretical result, we propose a practical approach to learn disentangled representations based on a sparsity-promoting bi-level optimization problem.
arXiv Detail & Related papers (2022-11-26T21:02:09Z) - Decomposing Natural Logic Inferences in Neural NLI [9.606462437067984]
We investigate whether neural NLI models capture the crucial semantic features central to natural logic: monotonicity and concept inclusion.
We find that monotonicity information is notably weak in the representations of popular NLI models which achieve high scores on benchmarks.
arXiv Detail & Related papers (2021-12-15T17:35:30Z) - Certified Monotonic Neural Networks [15.537695725617576]
We propose to certify the monotonicity of the general piece-wise linear neural networks by solving a mixed integer linear programming problem.
Our approach does not require human-designed constraints on the weight space and also yields more accurate approximation.
arXiv Detail & Related papers (2020-11-20T04:58:13Z) - Monotone operator equilibrium networks [97.86610752856987]
We develop a new class of implicit-depth model based on the theory of monotone operators, the Monotone Operator Equilibrium Network (monDEQ)
We show the close connection between finding the equilibrium point of an implicit network and solving a form of monotone operator splitting problem.
We then develop a parameterization of the network which ensures that all operators remain monotone, which guarantees the existence of a unique equilibrium point.
arXiv Detail & Related papers (2020-06-15T17:57:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.