UltimateDO: An Efficient Framework to Marry Occupancy Prediction with 3D Object Detection via Channel2height
- URL: http://arxiv.org/abs/2409.11160v1
- Date: Tue, 17 Sep 2024 13:14:13 GMT
- Title: UltimateDO: An Efficient Framework to Marry Occupancy Prediction with 3D Object Detection via Channel2height
- Authors: Zichen Yu, Changyong Shu,
- Abstract summary: Occupancy and 3D object detection are two standard tasks in modern autonomous driving system.
We propose a method to achieve fast 3D object detection and occupancy prediction (UltimateDO)
- Score: 2.975860548186652
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Occupancy and 3D object detection are characterized as two standard tasks in modern autonomous driving system. In order to deploy them on a series of edge chips with better precision and time-consuming trade-off, contemporary approaches either deploy standalone models for individual tasks, or design a multi-task paradigm with separate heads. However, they might suffer from deployment difficulties (i.e., 3D convolution, transformer and so on) or deficiencies in task coordination. Instead, we argue that a favorable framework should be devised in pursuit of ease deployment on diverse chips and high precision with little time-consuming. Oriented at this, we revisit the paradigm for interaction between 3D object detection and occupancy prediction, reformulate the model with 2D convolution and prioritize the tasks such that each contributes to other. Thus, we propose a method to achieve fast 3D object detection and occupancy prediction (UltimateDO), wherein the light occupancy prediction head in FlashOcc is married to 3D object detection network, with negligible additional timeconsuming of only 1.1ms while facilitating each other. We instantiate UltimateDO on the challenging nuScenes-series benchmarks.
Related papers
- 3DiffTection: 3D Object Detection with Geometry-Aware Diffusion Features [70.50665869806188]
3DiffTection is a state-of-the-art method for 3D object detection from single images.
We fine-tune a diffusion model to perform novel view synthesis conditioned on a single image.
We further train the model on target data with detection supervision.
arXiv Detail & Related papers (2023-11-07T23:46:41Z) - Homography Loss for Monocular 3D Object Detection [54.04870007473932]
A differentiable loss function, termed as Homography Loss, is proposed to achieve the goal, which exploits both 2D and 3D information.
Our method yields the best performance compared with the other state-of-the-arts by a large margin on KITTI 3D datasets.
arXiv Detail & Related papers (2022-04-02T03:48:03Z) - M3DSSD: Monocular 3D Single Stage Object Detector [82.25793227026443]
We propose a Monocular 3D Single Stage object Detector (M3DSSD) with feature alignment and asymmetric non-local attention.
The proposed M3DSSD achieves significantly better performance than the monocular 3D object detection methods on the KITTI dataset.
arXiv Detail & Related papers (2021-03-24T13:09:11Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
A reliable and accurate 3D tracking framework is essential for predicting future locations of surrounding objects and planning the observer's actions in numerous applications such as autonomous driving.
We propose a framework that can effectively associate moving objects over time and estimate their full 3D bounding box information from a sequence of 2D images captured on a moving platform.
arXiv Detail & Related papers (2021-03-12T15:30:02Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
Existing methods tackle the problem in two steps: first depth estimation is performed, a pseudo LiDAR point cloud representation is computed from the depth estimates, and then object detection is performed in 3D space.
We propose a model that unifies these two tasks in the same metric space.
Our approach achieves state-of-the-art performance on the challenging KITTI benchmark, with significantly reduced inference time compared with existing methods.
arXiv Detail & Related papers (2021-01-17T05:11:38Z) - Relation3DMOT: Exploiting Deep Affinity for 3D Multi-Object Tracking
from View Aggregation [8.854112907350624]
3D multi-object tracking plays a vital role in autonomous navigation.
Many approaches detect objects in 2D RGB sequences for tracking, which is lack of reliability when localizing objects in 3D space.
We propose a novel convolutional operation, named RelationConv, to better exploit the correlation between each pair of objects in the adjacent frames.
arXiv Detail & Related papers (2020-11-25T16:14:40Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z) - SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint
Estimation [3.1542695050861544]
Estimating 3D orientation and translation of objects is essential for infrastructure-less autonomous navigation and driving.
We propose a novel 3D object detection method, named SMOKE, that combines a single keypoint estimate with regressed 3D variables.
Despite of its structural simplicity, our proposed SMOKE network outperforms all existing monocular 3D detection methods on the KITTI dataset.
arXiv Detail & Related papers (2020-02-24T08:15:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.